首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locked nucleic acids (LNAs) incorporated into either stable single stranded oligonucleotides containing tetraloops or their complements have been found to increase second order hybridization rate constants by an order of magnitude compared to the all-DNA hybridization rate constants. Model sequences composed of 20 bases in length that can form hairpins due to a stable GAAA tetraloop were used where LNAs were substituted for the nucleotides in the loop, stem, or end regions of the strand and in the complementary strand. Substitution of the LNAs to the loop predictably raised the melting temperatures of the duplex however, the hybridization rates between the tetraloop and the complementary sequence also increased. In contrast, when LNAs were substituted in the stem, the hybridization rate decreased implying the formation of a more stable hairpin. Substitution of LNAs into the end region of the sequence had little effect on the hybridization rate constants although melting temperatures still showed a predictable increase. Rates also increased when LNAs were substituted into complementary strands of DNA tetraloops. The increase in hybridization rate constant is being attributed to changes in the structure of the stable single strands.  相似文献   

2.
Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have been shown to possess immune modulatory capacities. We investigated the effects of LNA substitutions on immune stimulation mediated by antisense ODN G3139 or CpG ODN 2006. LNA ODNs were tested for their ability to stimulate cytokine secretion from human immune cells or TLR9-dependent signaling. Phosphorothioate chimeric LNA/DNA antisense ODNs with phosphodiester-linked LNA nucleobases at both ends showed a marked decrease of immune modulation with an increasing number of 3' and 5' LNA bases. In addition, guanosine-LNA and cytosine-LNA or simply cytosine-LNA substitutions in the CpG dinucleotides of ODN 2006 led to strong decrease or near complete loss of immune modulation. TLR9-mediated signaling was similarly affected. These data indicate that increasing amounts of LNA residues in the flanks or substitutions of CpG nucleobases with LNA reduce or eliminate the immune stimulatory effects of CpG-containing phosphorothioate ODN.  相似文献   

3.
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2′-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3′ terminal U LNA and 5′ terminal LNAs are less stabilizing than interior and other 3′ terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2′-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2′-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2′-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2′-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37°C are presented for 2′-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.  相似文献   

4.
Aptamers interacting with RNA hairpins through loop-loop (so-called kissing) interactions have been described as an alternative to antisense oligomers for the recognition of RNA hairpins. R06, an RNA aptamer, was previously shown to form a kissing complex with the TAR (trans-activating responsive) hairpin of HIV-1 RNA (Ducongé and Toulmé (1999) RNA 5, 1605). We derived a chimeric locked nucleic acid (LNA)/DNA aptamer from R06 that retains the binding properties of the originally selected R06 aptamer. We demonstrated that this LNA/DNA aptamer competes with a peptide of the retroviral protein Tat for binding to TAR, even though the binding sites of the two ligands do not overlap each other. This suggests that upon binding, the aptamer TAR adopts a conformation that is no longer appropriate for Tat association. In contrast, a LNA/DNA antisense oligomer, which exhibits the same binding constant and displays the same base-pairing potential as the chimeric aptamer, does not compete with Tat. Moreover, we showed that the LNA/DNA aptamer is a more specific TAR binder than the LNA/DNA antisense sequence. These results demonstrate the benefit of reading the three-dimensional shape of an RNA target rather than its primary sequence for the design of highly specific oligonucleotides.  相似文献   

5.
We report the development of new software, OligoDesign, which provides optimal design of LNA (locked nucleic acid) substituted oligonucleotides for functional genomics applications. LNAs constitute a novel class of bicyclic RNA analogs having an exceptionally high affinity and specificity toward their complementary DNA and RNA target molecules. The OligoDesign software features recognition and filtering of the target sequence by genome-wide BLAST analysis in order to minimize cross-hybridization with non-target sequences. Furthermore it includes routines for prediction of melting temperature, self-annealing and secondary structure for LNA substituted oligonucleotides, as well as secondary structure prediction of the target nucleotide sequence. Individual scores for all these properties are calculated for each possible LNA oligonucleotide in the query gene and the OligoDesign program ranks the LNA capture probes according to a combined fuzzy logic score and finally returns the top scoring probes to the user in the output. We have successfully used the OligoDesign tool to design a Caenorhabditis elegans LNA oligonucleotide microarray, which allows monitoring of the expression of a set of 120 potential marker genes for a variety of stress and toxicological processes and toxicologically relevant pathways. The OligoDesign program is freely accessible at http://lnatools.com/.  相似文献   

6.
LNA: a versatile tool for therapeutics and genomics   总被引:21,自引:0,他引:21  
  相似文献   

7.
'Locked nucleic acids' (LNAs) are sugar modified nucleic acids containing the 2'-O-4'C-methylene-β-D-ribofuranoses. The substitution of RNAs with LNAs leads to an enhanced thermostability. Aptamers are nucleic acids, which are selected for specific target binding from a large library pool by the 'SELEX' method. Introduction of modified nucleic acids into aptamers can improve their stability. The stem region of a ricin A chain RNA aptamer was substituted by locked nucleic acids. Different constructs of the LNA-substituted aptamers were examined for their thermostability, binding activity, folding and RNase sensitivity as compared to the natural RNA counterpart. The LNA-modified aptamers were active in target binding, while the loop regions and the adjacent stem nucleotides remained unsubstituted. The thermostability and RNase resistance of LNA substituted aptamers were enhanced as compared to the native RNA aptamer. This study supports the approach to substitute the aptamer stem region by LNAs and to leave the loop region unmodified, which is responsible for ligand binding. Thus, LNAs possess an encouraging potential for the development of new stabilized nucleic acids and will promote future diagnostic and therapeutic applications.  相似文献   

8.
Horton TE  Maderia M  DeRose VJ 《Biochemistry》2000,39(28):8201-8207
This study analyzes the impact of phosphorothioate substitutions on the thermodynamic stability of a 12-nt RNA hairpin containing a (5')GAAA(3') tetraloop. The thermodynamic consequences of stereospecific phosphorothioate substitutions 5' to each adenosine in the loop region are measured using optical melting and calorimetry experiments. Surprisingly, a single stereospecific phosphorothioate substitution 5' to the second adenosine of the tetraloop, R(p)-A7, results in a stabilization corresponding to a Delta(DeltaG(37)(degrees)(C)) of approximately -2.9 kcal mol(-1) (0.1 M NaCl) when compared with that of an unmodified sample. Five other phosphorothioate-substituted samples did not show significant thermodynamic differences in comparison with the unsubstituted samples. Addition of Mg(2+) to all of the hairpins studied results in increased t(m's) that are fit with a general electrostatic model to a dissociation constant of K(d)(Mg(2+)) approximately 2-3 mM (0.1 M NaCl). The R(p)-A7 phosphorothioate-substituted hairpin showed an unusual decrease in t(m) and apparent increase in enthalpy of unfolding upon addition of Cd(2+). These results may impact the interpretation of interference mapping experiments that use phosphorothioate substitutions to characterize RNAs in solution.  相似文献   

9.
Kaur H  Wengel J  Maiti S 《Biochemistry》2008,47(4):1218-1227
A locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue exhibiting enhanced hybridization efficiency toward complementary strand. The potential of LNA-based oligonucleotides has been sought to improve the selectivity and specificity of probe sets employed in detection and specific targeting of nucleic acids. We have evaluated the influence of "locked nucleic acid" residues on hybridization thermodynamics, counterions and hydration of DNA.RNA heteroduplex using spectroscopic and calorimetric techniques. One to three LNA substitutions have been introduced either at the adenine (5'-AGCACCAG) or thymine (5'-TGCTCCTG) residues of the DNA strand. A complete thermodynamic profile for heteroduplex formation suggested that LNA-induced stabilization results from a favorable increase in the enthalpy of hybridization that compensates for the unfavorable entropy change. Analysis of differential scanning calorimetry data indicated a nonzero heat capacity change, DeltaCp, accompanying the heteroduplex formation. Isothermal titration calorimetry measurements indicated an increase in binding affinity of the two strands as the LNA content of the heteroduplex is increased. Overall our result demonstrated that the effect of LNA-substitution at the thymine residue is more pronounced compared to the adenine residue. Furthermore, optical melting studies showed that, compared to an unmodified duplex, the formation of LNA-modified duplex is accompanied by a higher uptake of counterions and a lower uptake of water molecules. Our result, thus, presents a preliminary attempt toward the characterization of hybridization thermodynamics of the LNA-based probe-target sets, which will in turn aid in the selection of optimal conditions for hybridization experiments, and evaluation of the minimum probe-length required for hybridization and cloning experiments.  相似文献   

10.
以UNCG、GNRA、CUUG(N=A、U、C或G,R=G或A)为端环能够形成稳定的、保守的发夹结构。高分辨率的溶液结构、晶体结构和计算机模拟等方法从原子水平上解析了这些发夹特殊的结构特征。在体内,它们发挥着重要的生物学功能:在折叠过程中作为折叠的起始位置帮助组织RNA分子正确折叠;与核酸受体结合参与三级相互作用;与蛋白质发生相互作用;阻止逆转录酶的延伸等等。另外,由于C(UUCG)G发夹极其稳定的特征,在体外RNA分子的实验测定中它还是稳定核酸结构的理想工具。这些稳定的发夹广泛分布于体内rRNA、催化RNA和非编码mRNA中。但在对人类编码区mRNA结构特征的研究当中,却未发现C(UUCG)G发夹。  相似文献   

11.
Hughesman CB  Turner RF  Haynes CA 《Biochemistry》2011,50(23):5354-5368
Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° < 0) in the entropy gain accompanying the helix-to-coil transition, with the magnitude of the reduction dependent on the type of nucleobase and its base pairing properties. This knowledge and our average measured value for ΔC(p) of 42 ± 11 cal mol(-1) K(-1) bp(-1) are then used to derive a new model that accurately predicts melting thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.  相似文献   

12.
In an effort to evaluate the relative contributions of sequence, ion binding, and hydration to the thermodynamic stability of nucleic acids, we have investigated the melting behavior of a double hairpin and that of its component single hairpins. Temperature-dependent UV absorption and differential scanning calorimetry techniques have been used to characterize the helix-coil transitions of three deoxyoligonucleotides: d(GTACT5GTAC), d(GCGCT5GCGC), and d(GCGCT5GCGCGTACT5GTAC). The first two oligomers melt with transition temperatures equal to 28 and 69 degrees C, respectively, in 10 mM dibasic sodium phosphate at pH 7.0. The Tm's are independent of strand concentration, strongly indicating the presence of single-stranded hairpin structures at low temperatures. The third oligomer, with a sequence corresponding to the joined sequences of the first two oligomers, melts with two apparently independent monomolecular transitions with Tm's of 41 and 69 degrees C. These transitions correspond to the melting of a double hairpin. In the salt range of 10-100 mM in NaCl, we obtain average enthalpies of 24 and 38 kcal/mol for the transitions in the single-hairpin molecules. Each transition in the double hairpin has an enthalpy of 32 kcal/mol. In addition, dtm/d log [Na+] for the transitions are 4.1 and 4.7 degrees C for the single hairpins and 12.6 and 11.2 degrees C for each transition in the double hairpin. The differential ion binding parameter between the double hairpin and that of the sum of single hairpins is roughly equal to 1.1 mol of Na+ ions/mol of double hairpin and is consistent with an increase in the electrostatic behavior of the stem phosphates of this molecule.  相似文献   

13.
A small DNA fragment having a characteristic sequence d(GCGAAAGC) has been shown to form an extraordinarily stable mini-hairpin structure and to have an unusually rapid mobility in polyacrylamide gel electrophoresis, even when containing 7M urea. Here, we have studied the stability of the various sequence variants of d(GCGAAAGC) and the corresponding RNA fragments. Many such sequence variants form stable mini-hairpins in a similar manner to the d(GCGAAAGC) sequence. The RNA fragment, r(GCGAAAGC) also forms a mini-hairpin structure with less stability. The DNA mini-hairpins with GAAA or GAA loop are much more stable than DNA and RNA mini-hairpins with other loop sequence so far as has been examined. The stability difference between DNA and RNA mini-hairpins may be deduced to the stem structures formed by DNA (B form) and RNA (A form). The stable hairpins consisting of the GCGAAAGC sequence cause strong band compression on the sequencing gel. This phenomenon should be carefully considered in DNA sequencing.  相似文献   

14.
Fluorescence in situ hybridization (FISH) is a powerful technique that is used to detect and localize specific nucleic acid sequences in the cellular environment. In order to increase throughput, FISH can be combined with flow cytometry (flow-FISH) to enable the detection of targeted nucleic acid sequences in thousands of individual cells. As a result, flow-FISH offers a distinct advantage over lysate/ensemble-based nucleic acid detection methods because each cell is treated as an independent observation, thereby permitting stronger statistical and variance analyses. These attributes have prompted the use of FISH and flow-FISH methods in a number of different applications and the utility of these methods has been successfully demonstrated in telomere length determination, cellular identification and gene expression, monitoring viral multiplication in infected cells, and bacterial community analysis and enumeration. Traditionally, the specificity of FISH and flow-FISH methods has been imparted by DNA oligonucleotide probes. Recently however, the replacement of DNA oligonucleotide probes with nucleic acid analogs as FISH and flow-FISH probes has increased both the sensitivity and specificity of each technique due to the higher melting temperatures (T(m)) of these analogs for natural nucleic acids. Locked nucleic acid (LNA) probes are a type of nucleic acid analog that contain LNA nucleotides spiked throughout a DNA or RNA sequence. When coupled with flow-FISH, LNA probes have previously been shown to outperform conventional DNA probes and have been successfully used to detect eukaryotic mRNA and viral RNA in mammalian cells. Here we expand this capability and describe a LNA flow-FISH method which permits the specific detection of RNA in bacterial cells (Figure 1). Specifically, we are interested in the detection of small non-coding regulatory RNA (sRNA) which have garnered considerable interest in the past few years as they have been found to serve as key regulatory elements in many critical cellular processes. However, there are limited tools to study sRNAs and the challenges of detecting sRNA in bacterial cells is due in part to the relatively small size (typically 50-300 nucleotides in length) and low abundance of sRNA molecules as well as the general difficulty in working with smaller biological cells with varying cellular membranes. In this method, we describe fixation and permeabilzation conditions that preserve the structure of bacterial cells and permit the penetration of LNA probes as well as signal amplification steps which enable the specific detection of low abundance sRNA (Figure 2).  相似文献   

15.
Fluorescence in situ hybridization (FISH) is a highly useful technique with a wide range of applications including the delineation of complex karyotypes, prenatal diagnosis of aneuploidies, screening for diagnostic or prognostic markers in cancer cells, gene mapping and gene expression studies. However, it is still a fairly time-consuming method with limitations in both sensitivity and resolution. Locked Nucleic Acids (LNAs) constitute a novel class of RNA analogs that have an exceptionally high affinity towards complementary DNA and RNA. Substitution of DNA oligonucleotide probes with LNA has shown to significantly increase their thermal duplex stability as well as to improve the discrimination between perfectly matched and mismatched target nucleic acids. To exploit the improved hybridization properties of LNA oligonucleotides in FISH, we have designed several LNA substituted oligonucleotide probes specific to different human-specific repetitive elements, such as the classical satellite-2, telomere and alpha-satellite repeats. In the present study we show that LNA modified oligonucleotides are excellent probes in FISH, combining high binding affinity with short hybridization time.  相似文献   

16.
Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics, and design of LNA oligonucleotides. The last part evaluates LNA as a diagnostic tool in genotyping.  相似文献   

17.
You Y  Tataurov AV  Owczarzy R 《Biopolymers》2011,95(7):472-486
Modern real-time PCR systems make it easy to monitor fluorescence while temperature is varied for hundreds of samples in parallel, permitting high-throughput studies. We employed such system to investigate melting transitions of ordered nucleic acid structures into disordered random coils. Fluorescent dye and quencher were attached to oligonucleotides in such a way that changes of fluorescence intensity with temperature indicated progression of denaturation. When fluorescence melting data were compared with traditional ultraviolet optical experiments, commonly used dye/quencher combinations, like fluorescein and tetramethylrhodamine, showed substantial discrepancies. We have therefore screened 22 commercially available fluorophores and quenchers for their ability to reliably report annealing and melting transitions. Dependence of fluorescence on temperature and pH was also investigated. The optimal performance was observed using Texas Red or ROX dyes with Iowa Black RQ or Black Hole quenchers. These labels did not alter two-state nature of duplex melting process and provided accurate melting temperatures, free energies, enthalpies, and entropies. We also suggest a new strategy for determination of DNA duplex thermodynamics where concentration of a dye-labeled strand is kept constant and its complementary strand modified with a quencher is added at increasing excess. These methodological improvements will help build predictive models of nucleic acid hybridization.  相似文献   

18.
Locked nucleic acid (LNA) analogues with 2',4'-bridged sugars show promise in antisense applications. S-5'-Me-LNA has high RNA affinity, and modified oligonucleotides show weakened immune stimulation in vivo. Conversely, an R-5'-methyl group dramatically lowers RNA affinity. To test the effects of S- and R-6'-methyl groups on 3'-fluoro hexitol nucleic acid (FHNA) stability, we synthesized S- and R-6'-Me-FHNA thymidine and incorporated them into oligo-2'-deoxynucleotides. As with LNA, S-6'-Me is stabilizing whereas R-6'-Me is destabilizing. Crystal structures of 6'-Me-FHNA-modified DNAs explain the divergent consequences for stability and suggest convergent origins of these effects by S- and R-6'-Me (FHNA) [-5'-Me (LNA and RNA)] substituents.  相似文献   

19.
20.
Elayadi AN  Braasch DA  Corey DR 《Biochemistry》2002,41(31):9973-9981
Oligonucleotides that contain locked nucleic acid (LNA) bases have remarkably high affinity for complementary RNA and DNA sequences. This increased affinity may facilitate the recognition of nucleic acid targets inside cells and thus improve our ability to use synthetic oligonucleotides for controlling cellular processes. Here we test the hypothesis that LNAs offer advantages for inhibiting human telomerase, a ribonucleoprotein that is critical for tumor cell proliferation. We observe that LNAs complementary to the telomerase RNA template are potent and selective inhibitors of human telomerase. LNAs can be introduced into cultured tumor cells using cationic lipid, with diffuse uptake throughout the cell. Transfected LNAs effectively inhibited intracellular telomerase activity up to 40 h post-transfection. Shorter LNAs of eight bases in length are also effective inhibitors of human telomerase. The melting temperatures of these LNAs for complementary sequences are superior to those of analogous peptide nucleic acid oligomers, emphasizing the value of LNA bases for high-affinity recognition. These results demonstrate that high-affinity binding by LNAs can be exploited for superior recognition of an intracellular target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号