首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
The potential use of peptide nucleic acid (PNA) as a sequence-specific inhibitor of RNA translation is investigated in this report. Three different regions of the PML/RARalpha oncogene, including two AUG potential start codons, were studied as targets of translation inhibition by antisense PNA in a cell-free system. A PNA targeted to the second AUG start codon, which was shown previously to be able to suppress in vitro translation from that site completely, was used alone or in combination with another PNA directed to the first AUG, and a third PNA within the 5'-untranslated region (5'-UTR) of mRNA. When used alone, no PNA was able to completely block the synthesis of the PML/RARalpha protein. The 5'-UTR PNA was the most potent translation inhibitor when used as single agent. However, a near complete (>/=90%) specific inhibition of the PML/RARalpha gene was obtained when the three PNAs were used in combination, thus obtaining an additive antisense effect.  相似文献   

3.
The potential pharmacologic benefits of using peptide nucleic acid (PNA) as an antisense agent are tempered by its incapacity to activate RNase H. The mixed backbone oligonucleotide (ON) (or gapmer) approach, in which a short internal window of RNAse H-competent residues is embedded within an RNase H-incompetent ON has not been applied previously to PNA because PNA and DNA hybridize to RNA with very different helical structures, creating structural perturbations at the two PNA-DNA junctions. It is demonstrated here for the first time that a short internal phosphodiester window within a PNA is sufficient to evoke the RNase H-dependent cleavage of a targeted RNA and to abrogate translation elongation in a well-characterized in vitro assay.  相似文献   

4.
The gene encoding glial fibrillary acidic protein (GFAP) is downregulated 24 hr after reversible brain ischemia, such as with a middle cerebral artery occlusion (MCAO). The in vivo imaging of decreased GFAP gene expression in cerebral ischemia was examined in the present studies using a targeted peptide nucleic acid (PNA), which was labeled with (111)In, and which hybridized to nucleotides 20-37 of the rat GFAP mRNA. The PNA was monobiotinylated, and was attached to a monoclonal antibody (MAb) to the transferrin receptor (TfR) via a biotin-streptavidin linkage. The TfR MAb enables trans-membrane transport of the PNA antisense radiopharmaceutical from blood to the cytosol of brain cells. The decreased GFAP gene expression at 24 hr after a 1-hr reversible MCAO was confirmed by immunocytochemistry. The [(111)In]-labeled PNA - MAb conjugate was administered intravenously to anesthetized rats at 24 hr after the 1-hr reversible MCAO, and the brain uptake of the targeted antisense imaging agent was decreased relative to brain regions outside of the infarct zone. These studies provide evidence that decreased expression of a target gene in brain can be imaged in vivo with a sequence-specific PNA, provided the antisense radiopharmaceutical is delivered across cell membranes with a receptor-specific targeting agent.  相似文献   

5.
Abstract

Peptide nucleic acids (PNA) are promising antisense molecule for blocking gene expression in cell culture or in vivo. Nevertheless because they are poor efficient to pass the cellular membrane, it is necessary to use a vectorisation agent to observe an inhibitory effect. We describe the coupling of the rhodamine labeled 17-mer antisense PNA to a fusogenic peptide from antenapedia via S-S linkage, the studies of the penetration of this complex into fibroblast cells and its inhibitory effect on piml targeted protononcogene.  相似文献   

6.
Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake, antisense PNAs may find applications as antimicrobial agents and as tools for microbial functional genomics.  相似文献   

7.
8.
Antisense properties of peptide nucleic acid   总被引:8,自引:0,他引:8  
Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose phosphate backbone has been replaced by a pseudo-peptide polymer to which the nucleobases are linked. PNA-oligomers can be synthesized in relatively large amounts, are highly stable in biological environments, and bind complementary DNA and RNA targets with remarkably high affinity and specificity. Thus PNA possesses many of the properties desired for a good antisense agent. Until recently, limited uptake of PNA into cells has been the major obstacle for applying PNA as an antisense agent in cell cultures and in vivo. Here, the antisense properties of PNA in vitro and in vivo will be reviewed. In particular, we will focus on recent observations indicating that PNA equipped with or without various uptake moieties may function as an efficient and gene-specific inhibitor of translation in Escherichia coli and in certain mammalian cell types.  相似文献   

9.
Peptide nucleic acids (PNA) are promising antisense molecule for blocking gene expression in cell culture or in vivo. Nevertheless because they are poor efficient to pass the cellular membrane, it is necessary to use a vectorisation agent to observe an inhibitory effect. We describe the coupling of the rhodamine labeled 17-mer antisense PNA to a fusogenic peptide from antenapedia via S-S linkage, the studies of the penetration of this complex into fibroblast cells and its inhibitory effect on pim1 targeted protononcogene.  相似文献   

10.
Pseudomonas aeruginosa is a ubiquitous bacterium which is able to attach to many abiotic and biotic surfaces and form biofilms resulting in infections. The motA gene was an essential gene in the early phase of biofilm formation of P. aeruginosa PAO1. In this study, antisense peptide nucleic acids (PNAs) and PNAs conjugated with the peptide (KFF)3K were used to investigate whether they could mediate gene-specific antisense effects in P. aeruginosa PAO1. We found that antisense (KFF)3K-PNA targeted at motA gene could inhibit biofilm formation in P. aeruginosa PAO1 in a dose-dependent manner. The minimal effective concentration of this antisense agent was 1 μmol l−1, and the inhibited effect could last for at least 8 h. When compared with the control group, the value of OD570 of P. aeruginosa PAO1 reduced apparently when treated with (KFF)3K-PNA. The expression of motA was sharply reduced when treated with (KFF)3K-PNA, but reduced slightly when treated with PNA, and had no reduction when treated with (KFF)3K. Our results demonstrated that the cell-penetrating peptide of (KFF)3K improved significantly the antisense inhibition effect of PNA. The (KFF)3K-PNA conjugates might be used as antisense agent for inhibition of the biofilm formation. This provides exciting possibility for developing new tool for microbial genetic treatment.  相似文献   

11.
Summary Antisense oligomers are potential pharmaceutical and radiopharmaceutical agents that can be used to modulate and image gene expression. Progress within vivo gene targeting using antisense-based therapeutics has been slower than expected during the last decade, owing to poor trans-cellular delivery of antisense agents. This chapter suggests that if antisense pharmacology is merged with drug targeting technology, then membrane barriers can be circumvented and antisense agents can be delivered to tissuesin vivo. Without the application of drug targeting, the likelihood of success for an antisense drug development program is low, particularly for the brain which is protected by the blood-brain barrier (BBB). Among the different classes of antisense agents, peptide nucleic acids (PNA) present advantages forin vivo applications over conventional and modified oligodeoxynucleotides (ODN), including phosphorothioates (PS)-ODN. Some advantages of PNAs include their electrically neutral backbone, low toxicity to neural cells, resistance to nucleases and peptidases, and lack of binding to plasma proteins. PNAs are poorly transported through cellular membranes, however, including the BBB and the brain cell membrane (BCM). Because the mRNA target for the antisense agent lies within the cytosol of the target cell, the BBB and the BCM must be circumventedin vivo, which is possible with the use of chimeric peptide drug targeting technology. Chimeric peptides are formed by conjugation of a non-transportable drug, such as a PNA, to a drug delivery vector. The vector undergoes receptor-mediated transcytosis (RMT) through the BBB and receptor-mediated endocytosis through the BCMin vivo. When labeled with a radioisotope (e.g.,125I or111In), the antisense chimeric peptide provides imaging of gene expression in the brainin vivo in a sequence-specific manner. Further development of antisense radiopharmaceutical agents may allow forin vivo imaging of genes in pathological states, and may provide tools for the analysis of novel genes with functional genomics.  相似文献   

12.

Background

The genome of retroviruses, including HIV-1, is packaged as two homologous (+) strand RNA molecules, noncovalently associated close to their 5′-end in a region called dimer linkage structure (DLS). Retroviral HIV-1 genomic RNAs dimerize through complex interactions between dimerization initiation sites (DIS) within the (5′-UTR). Dimer formation is prevented by so calledLong Distance Interaction (LDI) conformation, whereas Branched Multiple Hairpin (BMH) conformation leads to spontaneous dimerization.

Methods and Results

We evaluated the role of SL1 (DIS), PolyA Hairpin signal and a long distance U5-AUG interaction by in-vitro dimerization, conformer assay and coupled dimerization and template-switching assays using antisense PNAs. Our data suggests evidence that PNAs targeted against SL1 produced severe inhibitory effect on dimerization and template-switching processes while PNAs targeted against U5 region do not show significant effect on dimerization and template switching, while PNAs targeted against AUG region showed strong inhibition of dimerization and template switching processes.

Conclusions

Our results demonstrate that PNA can be used successfully as an antisense to inhibit dimerization and template switching process in HIV -1 and both of the processes are closely linked to each other. Different PNA oligomers have ability of switching between two thermodynamically stable forms. PNA targeted against DIS and SL1 switch, LDI conformer to more dimerization friendly BMH form. PNAs targeted against PolyA haipin configuration did not show a significant change in dimerization and template switching process. The PNA oligomer directed against the AUG strand of U5-AUG duplex structure also showed a significant reduction in RNA dimerization as well as template- switching efficiency.The antisense PNA oligomers can be used to regulate the shift in the LDI/BMH equilibrium.  相似文献   

13.
Antisense agents that inhibit genes at the mRNA level are attractive tools for genome-wide studies and drug target validation. The approach may be particularly well suited to studies of bacteria that are difficult to manipulate with standard genetic tools. Antisense peptide nucleic acids (PNA) with attached carrier peptides can inhibit gene expression in Escherichia coli and Staphylococcus aureus. Here we asked whether peptide-PNAs could mediate antisense effects in Mycobacterium smegmatis. We first targeted the gfp reporter gene and observed dose- and sequence-dependent inhibition at low micromolar concentrations. Sequence alterations within both the PNA and target mRNA sequences eliminated inhibition, strongly supporting an antisense mechanism of inhibition. Also, antisense PNAs with various attached peptides showed improved anti-gfp effects. Two peptide-PNAs targeted to the essential gene inhA were growth inhibitory and caused cell morphology changes that resemble that of InhA-depleted cells. Therefore, antisense peptide-PNAs can efficiently and specifically inhibit both reporter and endogenous essential genes in mycobacteria.  相似文献   

14.
Antisense oligomers are potential pharmaceutical and radiopharmaceutical agents that can be used to modulate and image gene expression. Progress with in vivogene targeting using antisense-based therapeutics has been slower than expected during the last decade, owing to poor trans-cellular delivery of antisense agents. This chapter suggests that if antisense pharmacology is merged with drug targeting technology, then membrane barriers can be circumvented and antisense agents can be delivered to tissues in vivo. Without the application of drug targeting, the likelihood of success for an antisense drug development program is low, particularly for the brain which is protected by the blood-brain barrier (BBB). Among the different classes of antisense agents, peptide nucleic acids (PNA) present advantages for in vivoapplications over conventional and modified oligodeoxynucleotides (ODN), including phosphorothioates (PS)-ODN. Some advantages of PNAs include their electrically neutral backbone, low toxicity to neural cells, resistance to nucleases and peptidases, and lack of binding to plasma proteins. PNAs are poorly transported through cellular membranes, however, including the BBB and the brain cell membrane (BCM). Because the mRNA target for the antisense agent lies within the cytosol of the target cell, the BBB and the BCM must be circumvented in vivo, which ispossible with the use of chimeric peptide drug targeting technology. Chimeric peptides are formed by conjugation of a non-transportable drug, such as a PNA, to a drug delivery vector. The vector undergoes receptor-mediated transcytosis (RMT) through the BBB and receptor-mediated endocytosis through the BCM in vivo. When labeled with a radioisotope (e.g., 125I or 111In), the antisense chimeric peptide provides imaging of gene expressionin the brain in vivoin a sequence-specific manner. Further development of antisense radiopharmaceutical agents may allow for in vivoimaging of genes in pathological states, and may provide tools for the analysis of novel genes with functional genomics.  相似文献   

15.
Summary Antisense oligomers are potential pharmaceutical and radiopharmaceutical agents that can be used to modulate and image gene expression. Progress with in vivo gene targeting using antisense-based therapeutics has been slower than expected during the last decade, owing to poor trans-cellular delivery of antisense agents. This chapter suggests that if antisense pharmacology is merged with drug targeting technology, then membrane barriers can be circumvented and antisense agents can be delivered to tissues in vivo. Without the application of drug targeting, the likelihood of success for an antisense drug development program is low, particularly for the brain which is protected by the blood-brain barrier (BBB). Among the different classes of antisense agents, peptide nucleic acids (PNA) present advantages for in vivo applications over conventional and modified oligodeoxynucleotides (ODN), including phosphorothioates (PS)-ODN. Some advantages of PNAs include their electrically neutral backbone, low toxicity to neural cells, resistance to nucleases and peptidases, and lack of binding to plasma proteins. PNAs are poorly transported through cellular membranes, however, including the BBB and the brain cell membrane (BCM). Because the mRNA target for the antisense agent lies within the cytosol of the target cell, the BBB and the BCM must be circumvented in vivo, which is possible with the use of chimeric peptide drug targeting technology. Chimeric peptides are formed by conjugation of a non-transportable drug, such as a PNA, to a drug delivery vector. The vector undergoes receptor-mediated transcytosis (RMT) through the BBB and receptor-mediated endocytosis through the BCM in vivo. When labeled with a radioisotope (e.g., 125I or 111In), the antisense chimeric peptide provides imaging of gene expression in the brain in vivo in a sequence-specific manner. Further development of antisense radiopharmaceutical agents may allow for in vivo imaging of genes in pathological states, and may provide tools for the analysis of novel genes with functional genomics.  相似文献   

16.
17.
Wolf Y  Pritz S  Abes S  Bienert M  Lebleu B  Oehlke J 《Biochemistry》2006,45(50):14944-14954
Peptide nucleic acids (PNAs) have shown great promise as potential antisense drugs; however, poor cellular delivery limits their applications. Improved delivery into mammalian cells and enhanced biological activity of PNAs have been achieved by coupling to cell-penetrating peptides (CPPs). Structural requirements for the shuttling ability of these peptides as well as structural properties of the conjugates such as the linker type and peptide position remained controversial, so far. In the present study an 18mer PNA targeted to the cryptic splice site of a mutated beta-globin intron 2, which had been inserted into a luciferase reporter gene coding sequence, was coupled to various peptides. As the peptide lead we used the cell-penetrating alpha-helical amphipathic peptide KLAL KLAL KAL KAAL KLA-NH2 [model amphipathic peptide (MAP)] which was varied with respect to charge and structure-forming properties. Furthermore, the linkage and the localization of the attached peptide (C- vs N-terminal) were modified. Positive charge as well as helicity and amphipathicity of the KLA peptide was all required for efficient dose-dependent correction of aberrant splicing. The highest antisense effect was reached within 4 h without any transfection agent. Stably linked conjugates were also efficient in correction of aberrant splicing, suggesting that a cleavable disulfide bond between CPP and PNA is clearly not essential. Moreover, the placement of the attached peptide turned out to be crucial for attaining antisense activity. Coadministration of endosome disrupting agents such as chloroquine or Ca2+ significantly increased the splicing correction efficiency of some conjugates, indicating the predominant portion to be sequestered in vesicular compartments.  相似文献   

18.
Peptide nucleic acid (PNA) is a DNA mimic with promising properties for the development of antisense agents. Antisense PNAs targeted to Escherichia coli genes can specifically inhibit gene expression, and attachment of PNA to the cell-permeabilizing peptide KFFKFFKFFK dramatically improves antisense potency. The improved potency observed earlier was suggested to be due to better cell uptake; however, the uptake kinetics of standard or modified PNAs into bacteria had not been investigated. Here we monitored outer and inner membrane permeabilization by using chemical probes that normally are excluded from cells but can gain access at points where membrane integrity is disturbed. Membrane permeabilization was much more rapid in the presence of peptide-PNA conjugates relative to the free components used alone or in combination. Indeed, peptide-PNAs permeabilized E. coli nearly as quickly as antimicrobial peptides. Furthermore, as expected for outer membrane-active compounds, added MgCl(2) reduced cell-permeabilization. Concurrent monitoring of outer and inner membrane permeabilization indicated that passage across the outer membrane is rate-limiting for uptake. The enhanced cell-permeation properties of peptide-PNAs can explain their potent antisense activity, and the results indicate an unanticipated synergy between the peptide and PNA components.  相似文献   

19.
Because peptide nucleic acids (PNAs) are capable of blocking amplification of deoxyribonucleic acid (DNA) by Taq DNA polymerase in vitro, we postulated that PNAs might be able to block replication in vivo. To explore this possibility, we assessed the ability of PNA to specifically block the replication of pUC19 plasmids by allowing a PNA, directed against segments of the Amp r sequence to bind to pUC19 prior to electroporation into Escherichia coli, strain DH10B. Colonies produced by this maneuver not only remained sensitive to ampicillin but were also incapable of blue color production on X-gal-containing media, thus demonstrating true blockade of pUC19 replication, rather than antisense activity. The ability of the PNA to prevent pUC19 replication in these experiments was shown to be dose related. Attempts to prevent the replication of E. coli using a PNA directed against a portion of the lac Z sequence found within the bacterial genome were not uniformly successful. Subsequent experiments showed that the electroporated PNA did not consistently enter a sufficient number of cells for an effect to be demonstrated in the assays used. Nonetheless, this is the first demonstration of in vivo complete replication blockade by a PNA and opens up the potential for new forms of specific antibiosis in both prokaryotic and eukaryotic cells.  相似文献   

20.
Liu Y  Braasch DA  Nulf CJ  Corey DR 《Biochemistry》2004,43(7):1921-1927
Peptide nucleic acids (PNAs) are a potentially powerful approach for the recognition of cellular mRNA and the inhibition of gene expression. Despite their promise, the rules for using antisense PNAs have remained obscure, and antisense PNAs have been used sparingly in research. Here we investigate the ability of PNAs to be effective antisense agents inside mammalian cells, to inhibit expression of human caveolin-1 (hCav-1), and to discriminate between its alpha and beta isoforms. Many human genes are expressed as isoforms. Isoforms may play different roles within a cell or within different tissues, and defining these roles is a challenge for functional genomics and drug discovery. PNAs targeted to the translation start codons for the alpha and beta isoforms inhibit expression of hCav-1. Inhibition is dependent on PNA length. The potency and duration of inhibition by PNAs are similar to inhibition of gene expression by short interferring RNA (siRNA). Expression of the alpha isoform can be blocked selectively by a PNA. Cell proliferation is halted by inhibition of expression of both hCav-1 isoforms, but not by inhibition of the alpha hCav-1 isoform alone. Efficient antisense inhibition and selective modulation of isoform expression suggest that PNAs are versatile tools for controlling gene expression and dissecting the roles of closely related protein variants. Potent inhibition by PNAs may supply a "knock down" technology that can complement and "cross-check" siRNA and other approaches to antisense gene inhibition that rely on oligomers with phosphate or phosphorothioate backbone linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号