首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to support bioanalytical LC/MS method development and plasma sample analysis in preclinical and clinical studies of the anti-hepatitis C-virus nucleotides, PSI-7977 and PSI-352938, the corresponding stable isotope labeled forms were prepared. These labeled compounds were prepared by addition reaction of the freshly prepared Grignard reagent (13)CD(3)MgI to the corresponding 2?'-ketone nucleosides followed by fluorination of the resulting carbinol with DAST. As expected, these 2?'-C-(trideuterated-(13)C-methyl) nucleotide prodrugs showed similar anti-HCV activity to that of the corresponding unlabeled ones.  相似文献   

2.
The 2 ′-deoxy-2 ′-fluoro-2 ′-C-methyluridine nucleotide prodrug, PSI-7851 and its single diastereomer PSI-7977 have displayed potent antiviral activity against hepatitis C virus in clinical trials, and PSI-7977 is currently in Phase III studies. As part of our SAR study of the 2 ′-deoxy-2 ′-fluoro-2 ′- C-methyl class of nucleosides, we prepared the cyclopentyl carbocyclic uridine analog 11 and its phosphoramidate prodrug 15. Both 11 and 15 were shown not to inhibit HCV replication. This lack of activity might be attributed to the inability of the monophosphate to be converted to the corresponding diphosphate or triphosphate or the inactivity of triphosphate of 11 as an inhibitor of the polymerase.  相似文献   

3.
The current available treatment for hepatitis C virus (HCV)—the causative of liver cirrhosis and development of liver cancer—is a dual therapy using modified interferon and ribavirin. While this regimen increases the sustained viral response rate up to 40–80 % in different genotypes, unfortunately, it is poorly tolerated by patients. PSI-7977, a prodrug for PSI-7409, is a Non-Structural 5b (NS5b) polymerase nucleoside inhibitor that is currently in phase III clinical trials. The activated PSI-7977 is a direct acting antiviral (DAA) drug that acts on NS5b polymerase of HCV through a coordination bond with the two Mg+2 present at the GDD active site motif. The present work utilizes a molecular modeling approach for studying the interaction between the activated PSI-7977 and the 12 amino acids constituting a 5 Å region surrounding the GDD active triad motif for HCV genotypes 1a, 2b, 3b and 4a. The analysis of the interaction parameters suggests that PSI-7977 is probably a better DAA drug for HCV genotypes 1a and 3b rather than genotypes 2b and 4a.  相似文献   

4.
Computer simulation method was applied to investigate the migration of lithium ion in three amorphous solid systems containing polyoxovanadate (POV) clusters [V10O28]6 ? . The cluster was adopted from a recently synthesized crystalline poly[octa-μ-aqua-octaaqua-μ-decavanadato-hexalithium] (POAODH). The simulated POV systems correspond to amorphous solid half-dehydrated solid and completely dehydrated solid doped with LiCl salt. The simulation results show large diffusion constants of lithium ions in all systems in spite of highly negatively charged [V10O28]6 ?  clusters presented in the system. The estimated ionic conductivity due to the migration of lithium ions reaches a magnitude of 10? 4 S/m. The conductivity increases as the water content in the system decreases. The analysis of moving trajectories shows the lithium ion moves around the oxygen sites of POV clusters and hops between them. The estimated displacement of lithium ion is about 4~5 Å, which is much larger than the corresponding displacement of lithium ion in a polymer matrix. Rapidly rotating clusters shown by orientation correlation function analysis, in conjunction with the large separation between clusters in the system, provides favorable conditions for the large amplitude migration of lithium ions.  相似文献   

5.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

6.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

7.
Uniformly labeled uridine diphosphoglucose (UDP(U-13C)G) was prepared by a two-step enzymatic synthesis. (U-13C) G-6-P was prepared quantitatively by incubating (U-13C) glucose, ATP, MgS04, and hexokinase. UDP(U-13C) Glucose was prepared by incubation of (U-13C)G-6-P with UDPG pyrophosphorylase, phosphoglucomutase, inorganic pyrophosphatase, UTP, and glucose-1, 6-diphosphate in pH 7.5, 100 mM Tris-HCl buffer. After purification over Biogel P-2 and subsequent preparative HPLC, UDP (U-13C)G was obtained in 50% yield. UDP(U-13C)G was characterized by 13C NMR and FAB-MS.  相似文献   

8.
A phosphoramidate prodrug of 2′-deoxy-2′-α-fluoro-β-C-methyluridine-5′-monophosphate, PSI-7851, demonstrates potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. PSI-7851 is a mixture of two diastereoisomers, PSI-7976 and PSI-7977, with PSI-7977 being the more active inhibitor of HCV RNA replication in the HCV replicon assay. To inhibit the HCV NS5B RNA-dependent RNA polymerase, PSI-7851 must be metabolized to the active triphosphate form. The first step, hydrolysis of the carboxyl ester by human cathepsin A (CatA) and/or carboxylesterase 1 (CES1), is a stereospecific reaction. Western blot analysis showed that CatA and CES1 are both expressed in primary human hepatocytes. However, expression of CES1 is undetectable in clone A replicon cells. Studies with inhibitors of CatA and/or CES1 indicated that CatA is primarily responsible for hydrolysis of the carboxyl ester in clone A cells, although in primary human hepatocytes, both CatA and CES1 contribute to the hydrolysis. Hydrolysis of the ester is followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the spontaneous elimination of phenol and the production of an alaninyl phosphate metabolite, PSI-352707, which is common to both isomers. The removal of the amino acid moiety of PSI-352707 is catalyzed by histidine triad nucleotide-binding protein 1 (Hint1) to give the 5′-monophosphate form, PSI-7411. siRNA-mediated Hint1 knockdown studies further indicate that Hint1 is, at least in part, responsible for converting PSI-352707 to PSI-7411. PSI-7411 is then consecutively phosphorylated to the diphosphate, PSI-7410, and to the active triphosphate metabolite, PSI-7409, by UMP-CMP kinase and nucleoside diphosphate kinase, respectively.  相似文献   

9.
10.
CO2 applied for Free-Air CO2 Enrichment (FACE) experiments is strongly depleted in 13C and thus provides an opportunity to study C turnover in soil organic matter (SOM) based on its δ 13C value. Simultaneous use of 15N labeled fertilizers allows N turnover to be studied. Various SOM fractionation approaches (fractionation by density, particle size, chemical extractability etc.) have been applied to estimate C and N turnover rates in SOM pools. The thermal stability of SOM coupled with C and N isotopic analyses has never been studied in experiments with FACE. We tested the hypothesis that the mean residence time (MRT) of SOM pools is inversely proportional to its thermal stability. Soil samples from FACE plots under ambient (380 ppm) and elevated CO2 (540 ppm; for 3 years) treatments were analyzed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). Based on differential weight losses (TG) and energy release or consumption (DSC), five SOM pools were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ 13C and δ 15N by IRMS. Energy consumption and mass losses in the temperature range 20–200°C were mainly connected with water volatilization. The maximum weight losses occurred from 200–310°C. This pool contained the largest amount of carbon: 61% of the total soil organic carbon in soil under ambient treatment and 63% in soil under elevated CO2, respectively. δ 13C values of SOM pools under elevated CO2 treatment showed an increase from −34.3‰ of the pool decomposed between 20–200°C to −18.1‰ above 480°C. The incorporation of new C and N into SOM pools was not inversely proportional to its thermal stability. SOM pools that decomposed between 20–200 and 200–310°C contained 2 and 3% of the new C, with a MRT of 149 and 92 years, respectively. The pool decomposed between 310–400°C contained the largest proportion of new C (22%), with a MRT of 12 years. The amount of fertilizer-derived N after 2 years of application in ambient and elevated CO2 treatments was not significantly different in SOM pools decomposed up to 480°C having MRT of about 60 years. In contrast, the pool decomposed above 480°C contained only 0.5% of new N, with a MRT of more than 400 years in soils under both treatments. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. Responsible Editor: Bernard Nicolardot.  相似文献   

11.
Rationale: Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) are non-selective cation channels that show high permeability to calcium. Previous studies from our laboratory have demonstrated that TRPA1 ion channels are expressed in adult mouse ventricular cardiomyocytes (CMs) and are localized at the z-disk, costamere and intercalated disk. The functional significance of TRPA1 ion channels in the modulation of CM contractile function have not been explored.

Objective: To identify the extent to which TRPA1 ion channels are involved in modulating CM contractile function and elucidate the cellular mechanism of action.

Methods and Results: Freshly isolated CMs were obtained from murine heart and loaded with Fura-2 AM. Simultaneous measurement of intracellular free Ca2+ concentration ([Ca2+]i) and contractility was performed in individual CMs paced at 0.3 Hz. Our findings demonstrate that TRPA1 stimulation with AITC results in a dose-dependent increase in peak [Ca2+]i and a concomitant increase in CM fractional shortening. Further analysis revealed a dose-dependent acceleration in time to peak [Ca2+]i and velocity of shortening as well as an acceleration in [Ca2+]i decay and velocity of relengthening. These effects of TRPA1 stimulation were not observed in CMs pre-treated with the TRPA1 antagonist, HC-030031 (10 µmol/L) nor in CMs obtained from TRPA1?/? mice. Moreover, we observed no significant increase in cAMP levels or PKA activity in response to TRPA1 stimulation and the PKA inhibitor peptide (PKI 14–22; 100 nmol/L) failed to have any effect on the TRPA1-mediated increase in CM contractile function. However, TRPA1 stimulation resulted in a rapid phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII) (1–5 min) that correlated with increases in CM [Ca2+]i and contractile function. Finally, all aspects of TRPA1-dependent increases in CM [Ca2+]i, contractile function and CaMKII phosphorylation were virtually abolished by the CaMKII inhibitors, KN-93 (10 µmol/L) and autocamtide-2-related peptide (AIP; 20 µmol/L).

Conclusions: These novel findings demonstrate that stimulation of TRPA1 ion channels in CMs results in activation of a CaMKII-dependent signaling pathway resulting in modulation of intracellular Ca2+ availability and handling leading to increases in CM contractile function. Cardiac TRPA1 ion channels may represent a novel therapeutic target for increasing the inotropic and lusitropic state of the heart.  相似文献   


12.
The structures and stabilities of eleven N13 + and N13 isomers have been investigated with second-order Møller–Plesset (MP2) and density functional theory (DFT) methods. Five N13 + isomers and six N13 isomers are all reasonable local minima on their potential energy hypersurfaces. The most stable N13 + cation is structure C-2 with C2v symmetry, which contains a pentazole ring and two N4 open chains. It is different from those of the N7 + and N9 + clusters, but similar to the N11 + cluster. Meanwhile, the most stable N13 structure A-2 is composed of a pentazole ring and a six-membered ring connected by two nitrogen atoms. It is not only different from those of the N7 and N9 clusters, but also from the N11 cluster. The decomposition pathways of structures C-2 and A-2 were investigated at the B3LYP/(aug)-cc-pVDZ level. From the barrier heights of the structures C-2 and A-2 decomposition processes, it is suggested that C-2 is difficult to observe experimentally and A-2 may be observed as a short-lived species. Figure Optimized geometrical parameters of N13 + isomer C-2   相似文献   

13.
For use as the internal standards in a quantitative analysis of natural jasmonic acid (JA) and methyl jasmonate (JAMe) by gas chromatography-mass spectrometry-selected ion monitoring, (±)-2-(2,3–2H2)JA and its methyl ester, (±)-2-(2,3–2H2)JAMe, were efficiently prepared from 2-(2–pentyl)-2-cyclopentenone through catalytic semi-deuteriogenation of acetylenic intermediates with deuterium gas in pyridine.  相似文献   

14.
The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (\( C_{{{\text{Hg}}^{{2 + }}}}\,{\sim18\,{\rm{mmol}}\,{\rm{{dm^{-3}}}}}\) and C GSH = 40–200 mmol dm?3 at pH ~10.5) by means of extended X-ray absorption fine structure (EXAFS) and 199Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS)2]4? and [Hg(GS)3]7?, with mean Hg–S bond distances of 2.32(1) and 2.42(2) Å observed in digonal and trigonal Hg–S coordination, respectively. The proportions of the Hg2+–glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS)4]10? complex, with four sulfur atoms coordinated at a mean Hg–S bond distance of 2.52(2) Å, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C GSH ≥ 160 mmol dm?3). Comparable alkaline mercury(II) cysteine (H2Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys2? allows the stable [Hg(S,N-Cys)2]2? chelate to form. The effect of temperature on the distribution of the Hg2+–glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with \( C_{{{\text{Hg}}^{{2 + }} }} \,{\sim7\,{\rm{mmol}}\,{\rm{{dm^{-3}}}}} \) and C GSH = 16–81 mmol dm?3. Complexes with high Hg–S coordination numbers, [Hg(GS)3]7? and [Hg(GS)4]10?, became strongly favored when just a moderate excess of glutathione (C GSH ≥28 mmol dm?3) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg(II)–glutathione speciation, as shown by the similarity of the EXAFS spectra obtained at room temperature for two parallel series of Hg(II)-glutathione solutions with \( C_{{{\text{Hg}}^{{2 + }} }} \,{\sim7\,{\rm{mmol}}\,{\rm{{dm^{-3}}}}},\) with and without 33% glycerol. Also, the 199Hg NMR chemical shifts of a series of ~18 mmol dm?3 mercury(II) glutathione solutions with 33% glycerol were not significantly different from those of the corresponding series in aqueous solution.  相似文献   

15.
The orientation of melittin in lecithin membranes was investigated by means of 13C-NMR spectroscopy. Phospholipase-free melittin was labeled with 13C-methyl groups at the -amino side chains of lysine 7, 21, and 23. From the pH dependence of the corresponding 13C resonances, pK values of the lysine residues were derived that were different for free and membrane-bound melittin. The shift reagent Pr(NO3)3 induced shifts in the 13C resonance position of all three lysines when melittin and the shift reagent were added to a lecithin vesicle suspension, whereas Pr3+ ions included in the inner volume of the vesicles did not affect the 13C resonances of melittin bound to the outer vesicle membrane. A wedge-like structure was derived for the membrane-bound melittin, the lysine side chains of which are freely accessible to the aqueous solvent.Abbreviation NOE Nuclear Overhauser Enhancement  相似文献   

16.
Holtum JA  Winter K 《Planta》2003,218(1):152-158
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature.  相似文献   

17.
A simple labeling approach is presented based on protein expression in [1-13C]- or [2-13C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone Cα sites, respectively. All of the methyl groups, with the exception of Thr and Ile(δ1) are produced with isolated 13C spins (i.e., no 13C–13C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-α sites are labeled without concomitant labeling at Cβ positions for 17 of the common 20 amino acids and there are no cases for which 13Cα13CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone 15N studies. The utility of the labeling is established by recording 13C R and CPMG-based experiments on a number of different protein systems.  相似文献   

18.
The effects of morin and nordihydroguaiaretic acid (NDGA), two plant secondary metabolites, on porcine pancreatic phospholipase A2 (PLA2) were investigated by isothermal titration calorimetry (ITC) and in silico docking analyses. The binding energies obtained for NDGA and morin from the ITC studies are ? 6.36 and ? 5.91 kcal mol? 1, respectively. Similarly, the glide scores obtained for NDGA and morin towards PLA2 were ? 7.32 and ? 7.23 kcal mol? 1, respectively. Further the docked complexes were subjected to MD simulation in the presence of explicit water molecules to check the binding stability of the ligands in the active site of PLA2. The bound ligands make hydrogen bonds with the active site residues of the enzyme and coordinate bonds with catalytically important Ca2+ ion. The binding of ligands at the active site of PLA2 may also contribute to the reported anti-inflammatory properties of NDGA and morin.  相似文献   

19.
The disappearance of 2-13C-acetate and the subsequent incorporation of label into cellular metabolites were followed in denitrifying cells of Thiobacillus versutus by 13C NMR spectroscopy. In cells grown under acetate-limitation, the specific rate of consumption was idependent of the density of the cell suspension. An isotopic steady state was reached within 30 min if sufficient substrate was added to the cell suspension. In cells grown under nitrate-limitation, the consumption of 2-13C-acetate proceeded at a significantly lower rate. The decrease and final disappearance of 2-13C-acetate were accompanied by incorporation of 13C into glutamate, glutamine, and by the release of labeled HCO 3 and CO2. The appearance of a broad resonance being the methyl endgroup of poly-3-hydroxybutyrate (PHB) was indicative for PHB mobilization during the incubation. The sequence of label incorporation and the distribution among the various carbon nuclei were consistent with the operation of the tricarboxylic acid cycle.  相似文献   

20.
Loiseau  P.  Soussana  J.F. 《Plant and Soil》1999,210(2):233-247
The effects of elevated [CO2] (700 μl l-1 CO2) and temperature increase (+3 °C) on carbon turnover in grassland soils were studied during 2.5 years at two N fertiliser supplies (160 and 530 kg N ha-1 y-1) in an experiment with well-established ryegrass swards (Lolium perenne) supplied with the same amounts of irrigation water. During the growing season, swards from the control climate (350 μl l-1 [CO2] at outdoor air temperature) were pulse labelled by the addition of 13CO2. The elevated [CO2] treatments were continuously labelled by the addition of fossil-fuel derived CO2 (13 C of -40 to -50 ‰). Prior to the start of the experimental treatments, the carbon accumulated in the plant parts and in the soil macro-organic matter (‘old’ C) was at −32‰. During the experiment, the carbon fixed in the plant material (‘new’ C) was at −14 and −54‰ in the ambient and elevated [CO2] treatments, respectively. During the experiment, the 13C isotopic mass balance method was used to calculate, for the top soil (0–15 cm), the carbon turnover in the stubble and roots and in the soil macro-organic matter above 200 μ (MOM). Elevated [CO2] stimulated the turnover of organic carbon in the roots and stubble and in the MOM at N+, but not at N−. At the high N supply, the mean replacement time of ‘old’ C by ‘new’ C declined in elevated, compared to ambient [CO2], from 18 to 7 months for the roots and stubble and from 25 to 17 months for the MOM. This resulted from increased rates of ‘new’ C accumulation and of ‘old’ C decay. By contrast, at the low N supply, despite an increase in the rate of accumulation of ‘new’ C, the soil C pools did not turnover faster in elevated [CO2], as the rate of ‘old’ C decomposition was reduced. A 3 °C temperature increase in elevated [CO2] decreased the input of fresh C to the roots and stubble and enhanced significantly the exponential rate for the ‘old’ C decomposition in the roots and stubble. An increased fertiliser N supply reduced the carbon turnover in the roots and stubble and in the MOM, in ambient but not in elevated [CO2]. The respective roles for carbon turnover in the coarse soil OM fractions, of the C:N ratio of the litter, of the inorganic N availability and of a possible priming effect between C-substrates are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号