首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uromodulin is the most abundant protein secreted in urine, and the mutated form of the uromodulin gene is associated with uromodulin-associated kidney disease (UAKD). Although uromodulin accumulates in the kidney of UAKD patients, it is unclear whether this is the wildtype or mutant form. In this study, we established a liquid chromatography (LC)-mass spectrometry/mass spectrometry (MS/MS)-based method for the detection of uromodulin mutants, using the C148W mutant as a target molecule. Membrane and cytosolic fractions of kidney samples from transgenic (Tg) mice expressing the C148W uromodulin mutant were shown to contain human uromodulin by western blotting, and mutant uromodulin with the C148W mutant sequence was observed by proteomic and selected reaction monitoring analyses. Our LC-MS/MS-based method is therefore useful for detection of mutant uromodulin that is undetectable by western blotting alone.  相似文献   

2.
Uromodulin is the most abundant protein secreted in urine, and the mutated form of the uromodulin gene is associated with uromodulin-associated kidney disease (UAKD). Although uromodulin accumulates in the kidney of UAKD patients, it is unclear whether this is the wildtype or mutant form. In this study, we established a liquid chromatography (LC)-mass spectrometry/mass spectrometry (MS/MS)-based method for the detection of uromodulin mutants, using the C148W mutant as a target molecule. Membrane and cytosolic fractions of kidney samples from transgenic (Tg) mice expressing the C148W uromodulin mutant were shown to contain human uromodulin by western blotting, and mutant uromodulin with the C148W mutant sequence was observed by proteomic and selected reaction monitoring analyses. Our LC-MS/MS-based method is therefore useful for detection of mutant uromodulin that is undetectable by western blotting alone.  相似文献   

3.
A simple and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of tetrahydrobiopterin (BH4) and dopamine in rat brain using epsilon-acetamidocaproic acid (AACA) as an internal standard. Proteins in the samples were precipitated with acetonitrile and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 × 100 mm, i.d., 3 μm) column using a mixture of 10mM ammonium formate in acetonitrile/water (75:25, v/v) as the mobile phase at a flow rate of 300 μl/min. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization with the operating conditions as multiple reaction monitoring (MRM) and positive ion mode from m/z 242.1 → 166.0 for BH4, m/z 154.1 → 90.0 for dopamine and m/z 174.1 → 114.0 for AACA (IS). The total chromatographic run time was for 5.5 min. The method was validated for the analysis of samples: the limit of detection was 10 ng/g. The calibration curve was linear between 10-2000 ng/g for BH4 (r(2)=0.995) and 10-5000 ng/g for dopamine (r(2)=0.997) in the rat brain. Thus, good correlated LC-ESI/MS/MS results were obtained and found to be a powerful tool for the quantitative analysis of BH4 and dopamine in the rat brain.  相似文献   

4.
We report on the quantitative determination of acetaminophen (paracetamol; NAPAP-d(0)) in human plasma and urine by GC-MS and GC-MS/MS in the electron-capture negative-ion chemical ionization (ECNICI) mode after derivatization with pentafluorobenzyl (PFB) bromide (PFB-Br). Commercially available tetradeuterated acetaminophen (NAPAP-d(4)) was used as the internal standard. NAPAP-d(0) and NAPAP-d(4) were extracted from 100-μL aliquots of plasma and urine with 300 μL ethyl acetate (EA) by vortexing (60s). After centrifugation the EA phase was collected, the solvent was removed under a stream of nitrogen gas, and the residue was reconstituted in acetonitrile (MeCN, 100 μL). PFB-Br (10 μL, 30 vol% in MeCN) and N,N-diisopropylethylamine (10 μL) were added and the mixture was incubated for 60 min at 30 °C. Then, solvents and reagents were removed under nitrogen and the residue was taken up with 1000 μL of toluene, from which 1-μL aliquots were injected in the splitless mode. GC-MS quantification was performed by selected-ion monitoring ions due to [M-PFB](-) and [M-PFB-H](-), m/z 150 and m/z 149 for NAPAP-d(0) and m/z 154 and m/z 153 for NAPAP-d(4), respectively. GC-MS/MS quantification was performed by selected-reaction monitoring the transition m/z 150 → m/z 107 and m/z 149 → m/z 134 for NAPAP-d(0) and m/z 154 → m/z 111 and m/z 153 → m/z 138 for NAPAP-d(4). The method was validated for human plasma (range, 0-130 μM NAPAP-d(0)) and urine (range, 0-1300 μM NAPAP-d(0)). Accuracy (recovery, %) ranged between 89 and 119%, and imprecision (RSD, %) was below 19% in these matrices and ranges. A close correlation (r>0.999) was found between the concentrations measured by GC-MS and GC-MS/MS. By this method, acetaminophen can be reliably quantified in small plasma and urine sample volumes (e.g., 10 μL). The analytical performance of the method makes it especially useful in pediatrics.  相似文献   

5.
An HPLC/MS/MS method for determination of butenafine hydrochloride in human plasma with testosterone propionate as the internal standard (IS) was developed and validated. Plasma samples were extracted with an n-hexane/diethyl ether (1:2, v/v) mixture and separated using a C(18) column by a gradient elution with the mobile phase containing acetonitrile and 5mM ammonium acetate buffer. Quantification was performed using multiple reaction monitoring (MRM) mode with transition of m/z 318.4→141.0 for butenafine hydrochloride and m/z 345.5→97.0 for testosterone propionate (IS). This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification (LLOQ) of this method was 0.0182 ng/ml and the calibration curve was linear over the 0.0182-1.82 ng/ml. The intra- and inter-run coefficient of variance was less than 11.53% and 10.07%, respectively. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetics of butenafine hydrochloride in healthy Chinese volunteers following its topical administration.  相似文献   

6.
Helicid is a traditional Chinese medicine used to treat headache and insomnia with definite effects. To facilitate pharmacokinetic studies of helicid in man, a sensitive and specific LC-MS/MS method for the quantitative detection of helicid in human plasma was developed and validated. The method involved the addition of bergeninum as the internal standard (IS), protein precipitation, HPLC separation, and quantification by MS/MS system using negative electrospray ionization in the multiple reaction monitoring mode (MRM). The precursor→product ion transitions were monitored at m/z 282.8→120.9 for helicid and m/z 326.9→192.2 for the IS, respectively. The lower limit of quantification (LLOQ) was 0.2 μg/L. The calibration curves for helicid was linear over a concentration range of 0.2-20 μg/L. The intra- and inter-batch analyses of QC samples at 0.4, 2, 20 μg/L indicated good precision (%R.S.D. between 2.69 and 5.47%) and accuracy (between 96.15 and 105.05%). The helicid was stable in human plasma stored at room temperature for at least 24h, 4°C for at least 24h, -20°C for at least 1 month, and for routine three freeze-thaw cycles. This accurate and specific assay provides a useful method for evaluating the pharmacokinetic profile of helicid in humans.  相似文献   

7.
Nitric oxide (NO), the endogenous modulator of vascular tone and structure, originates from oxidation of L-arginine catalysed by NO synthase (NOS). The L-arginine derivative L-homoarginine serves as an alternative NOS substrate releasing NO, competing with L-arginine for NOS, arginase, and arginine transport. In the present article we report a liquid chromatography-tandem mass spectrometric (LC-tandem MS) method for the determination of L-homoarginine in human plasma by stable-isotope dilution. L-[(13)C(6)]-Homoarginine was used as internal standard. This method provides high sample throughput of 25-μl aliquots of plasma with an analysis time of 4 min using LC-tandem MS electrospray ionisation in the positive mode (ESI+). Specific transitions for L-homoarginine and L-[(13)C(6)]-homoarginine were m/z 245 → m/z 211 and m/z 251 → m/z 217, respectively. The mean intra- and interassay CVs were 7.4 ± 4.5% (±SD) for 0.1-50 μmol/L and 7.5 ± 2.0% for 2 and 5 μmol/L, respectively. Applying this method, a mean plasma concentration of L-homoarginine of 2.5 ± 1.0 μmol/L was determined in 136 healthy humans.  相似文献   

8.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to determine HS270, a new histone deacetylase (HDAC) inhibitor, in rat plasma using SAHA as the internal standard (IS). After a single step liquid-liquid extraction with acetoacetate, analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). The chromatographic separation was achieved on a Hypurity C(18) column (50 mm × 2.1 mm, i.d., 5 μm). The MS/MS detection was conducted by monitoring the fragmentation of m/z 392.3→100.1 for HS270, m/z 265.1→232.1 for IS. The method had a chromatographic running time of 2.5 min and linear calibration curves over the concentrations of 0.5-1000 ng/mL. The recovery of the method was 70.8-82.5% and the lower limit of quanti?cation (LLOQ) was 0.5 ng/mL. The intra- and inter-batch precisions were less than 15% for all quality control samples at concentrations of 1.0, 100.0, and 750.0 ng/mL. The validated LC-MS/MS method has successfully applied to a HS270 pharmacokinetic study after oral doses of 25, 50, 100, 200 mg/kg, and i.v. dose of 5 mg/kg to rats.  相似文献   

9.
Vinorelbine is a semi-synthetic vinca alkaloid with demonstrated high activities against various types of advanced cancer. To support a clinical pharmacokinetic study, a simple, rapid and sensitive method to determine vinorelbine in human plasma was developed using reversed phase liquid chromatography (LC) coupled with electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS). Vinorelbine and vinblastine (the internal standard) were extracted from human plasma by one-step liquid-liquid extraction (LLE) with methyl-t-butyl ether. The chromatographic separation was achieved on a Spursil polar-modified C(18) column (50 mm×2.1 mm, 3 μm, Dikma Technologies) with an isocratic mobile phase of a 75:25 (v/v) acetonitrile-4 mmol/L ammonium formate (pH 3.0) mixture at a flow-rate of 0.4 mL/min. The MS/MS detection was performed in the positive ion multiple reaction monitoring (MRM) mode by monitoring the precursor→product ion transitions at m/z 779.4→122.0 and m/z 811.3→224.2 for vinorelbine and the internal standard, respectively. The assay was validated in the range 0.1-200 ng/mL (r>0.997), the lowest level of this range being the lower limit of quantification (LLOQ) based on 50 μL of plasma. The intra- and inter-day precisions were within 6.0%, while the accuracy was within ±4.7% of nominal values. Detection and quantification of both analytes within 2 min make this method suitable for high-throughput analyses. The method was successfully applied to evaluate the systemic pharmacokinetics of vinorelbine after a 20-min intravenous infusion of 25 mg/m(2) of vinorelbine to patients with metastatic breast cancer.  相似文献   

10.
Letosteine has been found to be effective in treating patients with chronic bronchopneumopathies in clinical practice. To provide robust support for its pharmacokinetic and clinical studies, a rapid and sensitive method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the analysis of letosteine in plasma samples. After protein precipitation, the plasma samples were separated on a reversed-phase C(18) column in less than 1.5 min. The LC-MS/MS system was performed in the positive ion multiple-reaction-monitoring (MRM) mode to produce intensive product ions of m/z 280.1→160.0 for letosteine and m/z 248.1→121.1 for the internal standard, tinidazole. The method was found to have excellent linearity (r ≥ 0.9974), precision (RSD ≤ 5.83%), extraction recovery (71.8-73.0%) and stability (RE, -8.45% to 9.03%) over a concentration range of 0.1140-152.0 μgL(-1). Compared to the previous published radioactive method, LC-MS/MS method showed many advantages including shorter analysis time, simpler preparation procedure, increased sensitivity as well as lower safety risks. In addition, this method was successfully applied to study the pharmacokinetics of letosteine following a single and multiple dose oral administration in Chinese healthy volunteers.  相似文献   

11.
One of the important challenges for MALDI imaging mass spectrometry (MALDI-IMS) is the unambiguous identification of measured analytes. One way to do this is to match tryptic peptide MALDI-IMS m/z values with LC-MS/MS identified m/z values. Matching using current MALDI-TOF/TOF MS instruments is difficult due to the variability of in situ time-of-flight (TOF) m/z measurements. This variability is currently addressed using external calibration, which limits achievable mass accuracy for MALDI-IMS and makes it difficult to match these data to downstream LC-MS/MS results. To overcome this challenge, the work presented here details a method for internally calibrating data sets generated from tryptic peptide MALDI-IMS on formalin-fixed paraffin-embedded sections of ovarian cancer. By calibrating all spectra to internal peak features the m/z error for matches made between MALDI-IMS m/z values and LC-MS/MS identified peptide m/z values was significantly reduced. This improvement was confirmed by follow up matching of LC-MS/MS spectra to in situ MS/MS spectra from the same m/z peak features. The sum of the data presented here indicates that internal calibrants should be a standard component of tryptic peptide MALDI-IMS experiments.  相似文献   

12.
A liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was developed and validated for the quantitation of (R)-, (S)-fluoxetine, and (R)-, (S)-norfluoxetine in ovine plasma. The analytes were extracted from ovine plasma at a basic pH using a single-step liquid-liquid extraction with methyl-tert-butyl ether. Chromatographic separation of all enantiomers was achieved using an AGP-chiral column with a run time of 10 min. (R)-, (S)-fluoxetine, and (R)-, (S)-norfluoxetine were quantitated at the total ion current (TIC) of multiple reaction monitoring (MRM) transitions of m/z 310.2→44.1, m/z 310.2→147.7 for (R)-, (S)-fluoxetine, and m/z 296.2→30.3, m/z 296.2→133.9 for (R)-, (S)-norfluoxetine. This method was validated for accuracy, precision, linearity, range, limit of quantitation (LOQ), selectivity, recovery, dilution integrity, matrix effect, and evaluation of carry-over. Observed accuracy ranges were as follows: (R)-fluoxetine -8.82 to 3.75%; (S)-fluoxetine -10.8 to 1.46%; (R)-norfluoxetine -7.50 to 0.37% and (S)-norfluoxetine -8.77% to -1.33%. Observed precision ranges were as follows: (R)-fluoxetine 5.29-11.5%; (S)-fluoxetine 3.91-11.1%; (R)-norfluoxetine 4.32-7.67% and (S)-norfluoxetine -8.77% to -1.33%. The calibration curves were weighted (1/X(2), n=4) and observed to be linear for all analytes with the following r(2) values: (R)-fluoxetine ≥ 0.997; (S)-fluoxetine ≥ 0.996; (R)-norfluoxetine ≥ 0.989 and (S)-norfluoxetine ≥ 0.994. The analytical range of the method was 1-500 ng/ml with an LOQ of 1 ng/ml for all analytes, using a sample volume of 300 μL.  相似文献   

13.
Among antitumor oxazaphosphorine drugs, the prodrug ifosfamide (IFO) and its analogs require metabolic activation by specific liver cytochrome P450 (CYP) enzymes to become therapeutically active. New 7,9-dimethyl-ifosfamide analogs have shown greater cytotoxic activity than IFO, whereas side-chain oxidation still occurred leading to monochloroacetone after N-dechloropropylation. A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for the simultaneous quantitation of the prodrug 7S,9S-dimethyl-ifosfamide (diMeIFO) and its two inactive metabolites, N(2)- and N(3)-deschloropropyl-dimethylifosfamide (N(2)-DCP-diMeIFO and N(3)-DCP-diMeIFO) in mouse plasma. After protein precipitation with methanol, the analytes were separated by isocratic reversed-phase chromatography with (methanol/ammonium formate pH 5.5, 60:40, v/v) and detected by tandem mass spectrometry using multiple reaction monitoring of transitions ions m/z 289→168 for diMeIFO, m/z 213→168 for N(2)-DCP-diMeIFO, m/z 213→92 for N(3)-DCP-diMeIFO and m/z 261→154 for IFO (internal standard). The calibration curves were linear over the concentration range of 20-10,000ng/mL for the three analytes. Mean extraction recoveries from mouse plasma were 99, 96, 99 and 100% for diMeIFO, N(2)-DCP-diMeIFO, N(3)-DCP-diMeIFO and IFO, respectively. The lower limit of quantitation for diMeIFO and its metabolites was 20 ng/mL in 50 μL plasma. The method was accurate with calculated bias from -5.8 to 4.0% for diMeIFO, from -1.1 to 10.6% for N(2)-DCP-diMeIFO and from -6.9 to 9.8% for N(3)-DCP-diMeIFO, and precise with coefficients of variation lower than 6.8%, 7.8% and 14.3%, respectively. The assay was successfully applied to a preliminary pharmacokinetic study of diMeIFO and of its metabolites in mice.  相似文献   

14.
Physalin D is an important constituent of some traditional Chinese medicines, and has several known bioactivities. An UPLC-MS/MS method for the determination of physalin D in rat plasma and tissues was developed and the pharmacokinetic and tissue distribution characteristics of physalin D after intravenous administrations were investigated. The bio-samples were prepared by a simple protein precipitation, and the separation of physalin D was achieved on a UPLC HSS T3 column with a mobile phase consisting of methanol/acetonitrile (70:30, v/v) and water (containing 0.1% formic acid and 10 mM ammonium acetate) at a flow rate of 0.3 mL/min. The MS/MS detection was carried out by monitoring the fragmentation of m/z 544.9→508.8 for physalin D and m/z 286.7→152.8 for luteolin (internal standard; IS) on a triple-quadrupole mass spectrometer. The total run time was only 3.6 min. The analyte showed good linearity over a wide concentration range (R(2)>0.995) and its lower limit of quantification was 2 ng/mL. The pharmacokinetic study found that physalin D was distributed and eliminated rapidly in rats (t(1/2)<10 min). Tissue distribution showed the highest level was observed in kidney, then in liver, but no physalin D was detected in brain, which indicated that kidney was the major distribution tissue for physalin D in rats and that physalin D does not cross the blood-brain barrier.  相似文献   

15.
Sulfonyl chlorides substituted with functional groups having high proton affinity can serve as derivatization reagents to enhance the sensitivity for steroidal estrogens in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The most commonly used reagent for derivatization of estrogens for LC-ESI-MS/MS is dansyl chloride. In this study, we compared dansyl chloride, 1,2-dimethylimidazole-4-sulfonyl (DMIS) chloride, pyridine-3-sulfonyl (PS) chloride, and 4-(1H-pyrazol-1-yl)benzenesulfonyl (PBS) chloride for derivatization of 17beta-estradiol (E2) prior to LC-ESI-MS/MS. The product ion spectra of the dansyl and DMIS derivatives were dominated by ions representing derivatization reagent moieties. In contrast, the product ion spectrum of the PS derivative of E2 and, to a lesser extent, the PBS derivative, showed analyte-specific fragment ions. Derivatization with PS chloride was therefore chosen for further investigation. The product ion spectrum of the PS derivative of E2 showed intense ions at m/z 272, assigned to the radical E2 cation, and at m/z 350, attributed to the loss of SO(2) from the [M+H](+) ion. Third-stage mass spectrometry of the PS derivative of E2 with isolation and collisional activation of the m/z 272 ion resulted in steroid C and D ring cleavages analogous to those observed in electron ionization mass spectrometry. The product ion spectra of the PS derivatives of estrone, 17alpha-ethinylestradiol, equilin, and equilenin showed similar estrogen-specific ions. Using derivatization with PS chloride, we developed an LC-ESI-MS/MS method with multiple reaction monitoring of primary and confirmatory precursor-to-product ion transitions for the determination of E2 in serum.  相似文献   

16.
A sensitive and rapid LC-MS/MS method was developed and validated for the determination of levamisole in human plasma. The assay was based on liquid-liquid extraction of analytes from human plasma with ethyl ether. Chromatographic separation was carried on an Agilent HC-C(8) column (150 mm × 4.6 mm, 5 μm) at 40°C, with a mobile phase consisting of acetonitrile-10 mM ammonium acetate (70:30, v/v), a flow rate of 0.5 mL/min and a total run time of 6 min. Detection and quantification were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 205.1→178.2 for levamisole, and m/z 296.1→264.1 for mebendazole (internal standard). The assay was linear over a concentration range of 0.1-30 ng/mL with a lower limit of quantification of 0.1 ng/mL. The coefficient of variation of the assay precision was less than 8.5%. The assay was successfully used to analyze human plasma samples in a pharmacokinetic study where levamisole was administered as a liniment.  相似文献   

17.
A sensitive and specific high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method has been developed and validated for the determination of isoforskolin in canine plasma. Liquid-liquid extraction was used to extract isoforskolin and the internal standard (I.S.) eplerenone from canine plasma. The chromatographic separation was performed on an Agela Venusil XBP Phenyl column with an isocratic mobile phase consisting of methanol-2mM ammonium acetate-formic acid (62:38:0.1, v/v/v), pumped at 0.35 mL/min. Isoforskolin and I.S. were detected at m/z 433.4→373.3 and m/z 415.3→163.5 in positive ion and multiple reaction monitoring (MRM) mode, respectively. The standard curves were linear over the concentration range of 0.1-200 ng/mL (r>0.99). The intra- and inter-batch accuracy values for isoforskolin at four concentrations were 90.2-108.3% and 97.8-106.6%, respectively. The RSDs were less than 6.0%. The mean extraction recoveries of isoforskolin and I.S. were 97.0 and 88.4%, respectively. The method was successfully applied to the pharmacokinetic study after an intravenous administration of isoforskolin in beagle dogs.  相似文献   

18.
A simple, precise and rapid ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for the quantification of darunavir, a protease inhibitor, using darunavir-d9 as internal standard (IS). The method involved liquid-liquid extraction of darunavir and IS in methyl-tert-butyl ether from 50 μL human plasma. The chromatographic separation was achieved on an Acquity UPLC BEH C18 (50 mm × 2.1mm, 1.7 μm particle size) analytical column under gradient conditions, in a run time of 1.6 min. The precursor → product ion transitions for darunavir (m/z 548.1 → 392.0) and IS (m/z 557.1 → 401.0) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and positive ion mode. The method was extensively validated for its selectivity, sensitivity, carryover check, linearity, precision and accuracy, reinjection reproducibility, recovery, matrix effect, ion suppression/enhancement, stability and dilution integrity. The linearity of the method was established in the concentration range of 1.0-5000 ng/mL. The mean relative recovery for darunavir (100.8%) and IS (89.8%) from spiked plasma samples was consistent and reproducible. The application of this method for routine measurement of plasma darunavir concentration was demonstrated by a bioequivalence study conducted in 40 healthy Indian subjects for a 600 mg tablet formulation along with 100mg ritonavir as booster under fast and fed conditions. To demonstrate the reproducibility in the measurement of study data, an incurred sample reanalysis was done with 400 subject samples and the % change in concentration was within ± 12%.  相似文献   

19.
To verify the exposure to nerve gas, a method for detecting human butyrylcholinesterase (BuChE)-nerve gas adduct was developed using LC-electrospray mass spectrometry (ESI-MS). Purified human serum BuChE was incubated with sarin, soman or VX, and the adduct was purified by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and digested in gel by treatment with chymotrypsin. The resulting peptide mixture was subjected to LC-ESI-MS. From the chymotryptic digest of untreated human BuChE, one peak corresponding to the peptide fragment containing the active center serine residue was detected on the extracted ion chromatogram at m/z 948.5, and the sequence was ascertained to be "GESAGAASVSL" by MS/MS analysis. From the chymotryptic digest of the human BuChE-sarin adduct, a singly charged peptide peak was detected on the extracted ion chromatogram at m/z 1,069.5, and the sequence was ascertained to be "GEXAGAASVSL" by MS/MS analysis (X denotes isopropylmethylphosphonylated serine). The difference in molecular weight (120.0 Da) between the active center peptide fragments corresponding to the untreated BuChE and BuChE-sarin adduct was assumed to be derived from the addition of an isopropyl methylphosphonyl moiety to the serine residue. The formation of human BuChE adducts with soman, VX and an aged soman adduct was confirmed by detecting the respective active center peptide fragments using LC-ESI-MS. To apply the established method to an actual biological sample, human serum was incubated with VX, and the adduct was purified by procainamide affinity chromatography followed by SDS-PAGE. After chymotryptic in gel digestion, the ethylphosphonylated active center peptide fragment could be detected, and the structure of the residue was ascertained by LC-ESI-MS analysis.  相似文献   

20.
Rhodamine 123 (R123), as a typical of P-gp substrate, was widely used to quantify P-glycoprotein (P-gp) functional efflux activity in vivo. A new, rapid and sensitive method was developed for quantifying R123 in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). R123 and Rhodamine 6G (R6G, the internal standard, IS) were extracted from aliquots of plasma with ethyl acetate and dichloromethane (4:1) as the solvent and chromatographic separation was performed using a Zorbax Eclipse Plus C18 column. The mobile phase was composed of A: ammonium formate-formic acid buffer containing 5 mM ammonium formate and 0.1% formic acid and B: methanol (A:B, 5:95, v/v). To quantify R123 and IS respectively, multiple reaction monitoring (MRM) transition of m/z 345.2→285.2 and m/z 443.3→415.2 was performed. The analysis time was 4 min in positive mode; the calibration curve was linear in the concentration range of 1-200 ng/ml. The lowest limit of quantification (LLOQ) reached 1 ng/ml. The intra and inter-day precision were less than 9.2% for the low quality control (QC) level, and 3.4% for other QC levels, respectively, while the intra and inter-day relative errors ranged between -7.4% and 9.1% for three QC concentration levels. The LC-MS/MS method proved to be simple, accurate, reliable and with a shorter running time and has been successfully applied to evaluate the functional activity of P-glycoprotein in an absorption experiment in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号