首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymocytes lacking adenosine deaminase (ADA) activity, a purine metabolism enzyme, accumulate intracellular dATP and consequently undergo apoptosis during development. We have analyzed the effect of ADA enzyme inhibition in human thymocyte suspension cultures with regard to accumulation of intracellular dATP and induction of apoptosis. We demonstrate that while inhibition of deoxycytidine kinase will prevent the accumulation of dATP and induction of apoptosis to a large degree, inhibition of both deoxycytidine kinase and adenosine kinase completely abrogates the accumulation of dATP and significantly reduces the induction of apoptosis. Thus, both deoxynucleoside kinases are involved in this model of ADA deficiency.  相似文献   

2.
Murine fetal thymic organ culture (FTOC) was used to investigate the mechanism by which a lack of adenosine deaminase (ADA) leads to a failure of T cell production in the thymus. We previously showed that T cell development was inhibited beginning at the CD4(-)CD8(-)CD25(+)CD44(low) stage in ADA-deficient FTOC initiated at day 15 of gestation when essentially all thymocytes are CD4(-)CD8(-). In the present study, we asked whether thymocytes at later stages of differentiation would also be sensitive to ADA inhibition by initiating FTOC when substantial numbers of CD4(+)CD8(+) thymocytes were already present. dATP was highly elevated in ADA-deficient cultures, and the recovery of alphabeta TCR(+) thymocytes was inhibited by 94%, indicating that the later stages of thymocyte differentiation are also dependent upon ADA. ADA-deficient cultures were partially rescued by the pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone or by the use of apoptotic protease-activating factor-1-deficient mice. Rescue was even more dramatic, with 60- to >200-fold increases in the numbers of CD4(+)CD8(+) cells, when FTOC were performed with an inhibitor of adenosine kinase, the major thymic deoxyadenosine phosphorylating enzyme, or with bcl-2 transgenic mice. dATP levels were normalized by treatment with either carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone or an adenosine kinase inhibitor, but not in cultures with fetal thymuses from bcl-2 transgenic mice. These data suggest that ADA deficiency leads to the induction of mitochondria-dependent apoptosis as a consequence of the accumulation of dATP derived from thymocytes failing the positive/negative selection checkpoint.  相似文献   

3.
Impaired germinal center maturation in adenosine deaminase deficiency   总被引:2,自引:0,他引:2  
Mice deficient in the enzyme adenosine deaminase (ADA) have small lymphoid organs that contain reduced numbers of peripheral lymphocytes, and they are immunodeficient. We investigated B cell deficiency in ADA-deficient mice and found that B cell development in the bone marrow was normal. However, spleens were markedly smaller, their architecture was dramatically altered, and splenic B lymphocytes showed defects in proliferation and activation. ADA-deficient B cells exhibited a higher propensity to undergo B cell receptor-mediated apoptosis than their wild-type counterparts, suggesting that ADA plays a role in the survival of cells during Ag-dependent responses. In keeping with this finding, IgM production by extrafollicular plasmablast cells was higher in ADA-deficient than in wild-type mice, thus indicating that activated B cells accumulate extrafollicularly as a result of a poor or nonexistent germinal center formation. This hypothesis was subsequently confirmed by the profound loss of germinal center architecture. A comparison of levels of the ADA substrates, adenosine and 2'-deoxyadenosine, as well resulting dATP levels and S-adenosylhomocysteine hydrolase inhibition in bone marrow and spleen suggested that dATP accumulation in ADA-deficient spleens may be responsible for impaired B cell development. The altered splenic environment and signaling abnormalities may concurrently contribute to a block in B cell Ag-dependent maturation in ADA-deficient mouse spleens.  相似文献   

4.
Transplantable BALB/c and AKR lymphomas of different cell surface immunologic phenotypes have distinctive patterns of response to the ADA inhibitor DCF in vivo and in vitro. BAL 9, a lymphoma of the Lyt-1+,2+ T cell phenotype, was the most sensitive to DCF in vivo, and its DNA synthesis was inhibited more than 95% when cultured in the presence of dAr and DCF in vitro. This was correlated with a 10-fold increase in dATP content. The ADA and AMPDA activities were both high. Two lymphomas of the Lyt-1-,2+ T cell phenotype, BAL 5 and AKTB - lt , as well as two B cell phenotype lymphomas, A20 .3 and AKTB -lb, were all moderately inhibited in their in vivo growth if enough DCF was administered. However, their DNA synthesis in vitro was only inhibited 8 to 24% by dAr and DCF, there was only a twofold increase in the accumulation of dATP, and ADA and AMPDA activities were both low in the two BALB/c lymphomas tested. BAL 13, the only lymphoma of the Lyt-1+,2- phenotype examined, was completely resistant to DCF in vivo and in vitro. When cultured in the presence of dAr and DCF there was a transient increase in dATP content, followed by an abrupt decline. AMPDA activity was five to seven times greater than in the other lymphomas tested. ADA activity was moderate. The activities of 5' nucleotidase and of adenosine kinase were low and approximately equal in all the BALB/c lymphomas. These results suggest that the response to DCF by lymphomas of various immunologic phenotypes can be correlated with their nucleoside metabolism. The sensitivity of BAL 9 and the resistance of BAL 13 to DCF are correlated with their tendency to accumulate dATP and with their AMPDA and ADA activity ratios. The moderate sensitivity to DCF in vivo of the other T and B cell lymphomas, however, could not be clearly explained by any of the in vitro parameters thus far investigated, and this suggests that mechanisms inhibiting lymphoma proliferation other than dATP accumulation may be operating.  相似文献   

5.
The inborn deficiency of adenosine deaminase is characterised by accumulation of excess amounts of cytotoxic deoxyadenine nucleotides in lymphocytes. Formation of dATP requires phosphorylation of deoxyadenosine by deoxycytidine kinase (dCK), the main nucleoside salvage enzyme in lymphoid cells. Activation of dCK by a number of genotoxic agents including 2-chlorodeoxyadenosine, a deamination-resistant deoxyadenosine analogue, was found previously. Here, we show that deoxyadenosine itself is also a potent activator of dCK if its deamination was prevented by the adenosine deaminase inhibitor deoxycoformycin. In contrast, deoxycytidine was found to prevent stimulation of dCK by various drugs. The activated form of dCK was more resistant to tryptic digestion, indicating that dCK undergoes a substrate-independent conformational change upon activation. Elevated dCK activities were accompanied by decreased pyrimidine nucleotide levels whereas cytotoxic dATP pools were selectively enhanced. dCK activity was found to be downregulated by growth factor and MAP kinase signalling, providing a potential tool to slow the rate of dATP accumulation in adenosine deaminase deficiency.  相似文献   

6.
The analysis of progress curves using the integrated rate equation was applied to the adenosine deaminase-catalyzed conversion of adenosine to inosine. Adenosine deaminase was purified from human red blood cells of phenotypes ADA 1, ADA 2, and ADA 2-1. For all three types, no measurable product inhibition by inosine was observed. These results do not confirm the hypothesis that inosine accumulation in purine nucleoside phosphorylase deficiency causes adenosine deaminase inhibition, resulting in a common mechanism for the immune defects related to these two enzyme deficiencies.  相似文献   

7.
The biochemical mechanism of lymphocyte dysfunction with adenosine deaminase deficiency has been investigated using cultured phytohemagglutinin stimulated normal peripheral blood lymphocytes and the adenosine deaminase (ADA) inhibitor 2'-deoxycoformycin. The addition of deoxyadenosine to ADA-inhibited (but not to uninhibited) cells generated increased dATP pools (up to 50-fold greater than controls) and depressed the mitogen response. dATP Accumulation was accompanied by depletion of the other three deoxynucleoside triphosphate (dNTP) pools (dTTP, dCTP, and dGTP). Suppression of the mitogen response could be prevented ("reversed") to 90% of control levels by the addition of deoxynucleoside precursors for the depleted dNTPs at the initiation of mitogen stimulation. "Reversal" restored the dTTP and possibly the dGTP pools. Thus the mechanism of toxicity in this model appears to be inhibition of ribonucleotide reductase by massive accumulation of dATP, resulting in starvation for the other three deoxyribonucleoside triphosphates. "Reversibility" of this toxicity by providing sources for the missing three deoxynucleoside triphosphates argues for ribonucleotide reductase inhibition rather than other mechanisms of deoxyadenosine toxicity in this model.  相似文献   

8.
Using the S49 T-cell lymphoma system for the study of immunodeficiency diseases, we characterized several variants in purine salvage and transport pathways and studied their responses to the cytotoxic action of adenosine (5-20 micron) in the presence of adenosine deaminase (ADA) inhibitors. Both an adenosine transport deficient mutant and a mutant lacking adenosine (ado) kinase activity are resistant to the cytotoxic effects of adenosine up to 15 micron. Variants lacking hypoxanthine-guanine phosphoribosyl transferase or adenine phosphoribosyltransferase are sensitive to the killing action of adenosine. We monitored the intracellular concentrations of purine and pyrimidine nucleotides, orotate, and PPriboseP in mutant and wild-type cells following the addition of adenosine and an ADA inhibitor. We conclude that at low concentrations, adenosine must be phosphorylated to deplete the cell of pyrimidine nucleotides and PPriboseP and to promote the accumulation of orotate. These alterations account for one mechanism of adenosine toxicity.  相似文献   

9.
Stimulation of the activity of deoxycytidine kinase (dCK), the principal deoxynucleoside salvage enzyme, has been recently considered as a protective cellular response to a wide range of agents interfering with DNA repair and apoptosis. In light of this, the potential contribution of dCK activation to apoptosis induction—presumably by supplying dATP or its analogues for the apoptosome formation—deserves consideration. Two‐hour exposure of human tonsillar lymphocytes to 2‐chloro‐deoxyadenosine (CdA) led to a two‐fold activation of dCK. This activation process was inhibited by pifithrin‐α, a potent inhibitor of p53. When the dNTP pools were determined, both deoxypyrimidine triphosphate and dGTP pools were reduced after the treatments, while dATP levels elevated by 62%, 77% and 50% in the CdA, aphidicolin and etoposide‐treated cells, respectively. We assume that dCK activation elicited by cellular damage might be a proapoptotic factor in terms of generating dATP well before the release of cytochrome c and deoxyguanosine kinase from mitochondria.  相似文献   

10.
Deoxyadenosine triphosphate (dATP) is present in adenosine deaminase (ADA)-deficient or ADA-inhibited human red cells and in the red cells of the opossum Didelphis virginiana. In order to investigate the functions of dATP in the red cell, red cells were treated with 2'-deoxycoformycin (dCf), a powerful inhibitor of ADA, and incubated with phosphate, deoxyadenosine and glucose. These red cells in which ATP was almost completely replaced by dATP, had the same shape, lactate production, nucleotide consumption, stability of reduced glutathione, osmotic fragility and cell deformability as red cells containing ATP. Cells merely depleted of ATP showed reduced viability. This indicates that dATP compensates well for the absence of ATP and acts as an energy-transferring molecule to maintain cell viability. These results indicate that the accumulation of dATP or the reduction of ATP is not the cause of the hemolysis observed after dCf administration.  相似文献   

11.
12.
Endothelial cell (EC) apoptosis is important in vascular injury, repair, and angiogenesis. Homocysteine and/or adenosine exposure of ECs causes apoptosis. Elevated homocysteine or adenosine occurs in disease states such as homocysteinuria and tissue necrosis, respectively. We examined the intracellular signaling mechanisms involved in this pathway of EC apoptosis. Inhibition of protein tyrosine phosphatase (PTPase) attenuated homocysteine- and/or adenosine-induced apoptosis and completely blocked apoptosis induced by the inhibition of S-adenosylhomocysteine hydrolase with MDL-28842. Consistent with this finding, the tyrosine kinase inhibitor genistein enhanced apoptosis in adenosine-treated ECs. Adenosine significantly elevated the PTPase activity in the ECs. Mitogen-activated protein kinase activities were examined to identify possible downstream targets for the upregulated PTPase(s). Extracellular signal-regulated kinase (ERK) 1 activity was slightly elevated in adenosine-treated ECs, whereas ERK2, c-Jun NH(2)-terminal kinase-1, or p38beta activities differed little. The mitogen-activated protein kinase-1 inhibitor PD-98059 enhanced DNA fragmentation, suggesting that increased ERK1 activity is a result but not a cause of apoptosis in adenosine-treated ECs. Adenosine-treated ECs had diminished p38alpha activity compared with control cells; this effect was blunted on PTPase inhibition. These results indicate that PTPase(s) plays an integral role in the induction of EC apoptosis upon exposure to homocysteine and/or adenosine, possibly by the attenuation of p38alpha activity.  相似文献   

13.
S-adenosylhomocysteine (SAH) is known to be a potent inhibitor of S-adenosylmethionine (SAM)-mediated reactions, of which SAH itself is a product. The immediate metabolic fate of SAH involves its hydrolysis to adenosine and L-homocysteine by the enzyme SAH hydrolase, but the reversibility of this reaction and its extremely low Keq in the hydrolytic direction suggest that under certain conditions of adenosine excess, SAH might accumulate with significant cytotoxic effects. We have used a model system consisting of cultured S49 mouse lymphoma cells together with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), to determine whether SAH is a mediator of adenosine cytotoxicity.Cells rendered resistant to adenosine-induced pyrimidine starvation by the addition of exogenous uridine or by the mutational loss of adenosine kinase are still sensitive to adenosine at concentrations >15 μM. We find that this effect is appreciably enhanced by the addition of L-homocysteine thiolactone to the culture medium. Cytotoxic concentrations of adenosine also cause significant elevations in intracellular levels of SAH, which are increased an additional several fold by 100μM exogenous L-homocysteine thiolactone. A fair correlation exists between a single time point determination of intracellular SAH and the degree of growth inhibition after 72 hr, but complicated time-dependent variations in SAH make it difficult to compare results obtained in the absence and presence of exogenous L-homocysteine thiolactone.In vivo DNA methylation in S49 cells is markedly inhibited by exposure of cells to concentrations of adenosine known to cause uridine-resistant cytotoxicity. This inhibition of methylation has been measured with short-term pulses of radiolabel, and correlates well with intracellular concentrations of SAH at all tested combinations of adenosine and L-homocysteine thiolactone. The results suggest that the uridine-resistant cytotoxic effects of adenosine on ADA-inhibited S49 cells are secondary to the inhibition of SAM-mediated methylation reactions by the adenosine metabolite SAH.  相似文献   

14.
B Ullman  L J Gudas  A Cohen  D W Martin 《Cell》1978,14(2):365-375
The inherited absence of either adenosine deaminase (ADA) or purine nucleoside phosphorylase is associated with severe immunological impairment. We have developed a cell culture model using a mouse T cell lymphoma to simulate ADA deficiency and to study the relationship between purine salvage enzymes and immune function. 2′-deoxyadenosine triphosphate (deoxyATP) levels have been shown to be greatly elevated in erythrocytes of immunodeficient, ADA-deficient patients, suggesting that deoxyadenosine is the potentially toxic substrate in ADA deficiency. Using a potent ADA inhibitor, we have demonstrated that deoxyadenosine is growth-inhibitory and cytotoxic to S49 cells, and that deoxyATP accumulates in these cells. Cell variants, unable to transport or phosphorylate deoxyadenosine, are much less sensitive to deoxyadenosine, indicating that intracellular phosphorylation of deoxyadenosine is required for the lethal effects.We have partially reversed the cytotoxic effects of deoxyadenosine with deoxycytidine in wild-type cells, but we cannot show any reversal in cell lines lacking deoxycytidine kinase. Adenosine (ado) kinase-deficient cells are extremely resistant to deoxyadenosine in the presence of deoxycytidine. This deoxycytidine reversal of deoxyadenosine toxicity is consistent with an inhibition of ribonucleotide reductase by deoxyATP, and we have shown that incubation of S49 cells with deoxyadenosine markedly reduces intracellular levels of deoxyCTP, deoxyGTP and TTP.Kinetics data in wild-type cells and in cell variants are consistent with the presence of two deoxyadenosine-phosphorylating activities — one associated with ado kinase and another associated with deoxycytidine kinase.The S49 cells appear to be a valid model for the simulation of ADA deficiency in cell culture, and from our results, we can suggest administration of deoxycytidine as a pharmacological regimen to circumvent the clinicopathologic symptoms in ADA deficiency.  相似文献   

15.
Stimulation of the activity of deoxycytidine kinase (dCK), the principal deoxynucleoside salvage enzyme, has been recently considered as a protective cellular response to a wide range of agents interfering with DNA repair and apoptosis. In light of this, the potential contribution of dCK activation to apoptosis induction--presumably by supplying dATP or its analogues for the apoptosome formation--deserves consideration. Two-hour exposure of human tonsillar lymphocytes to 2-chloro-deoxyadenosine (CdA) led to a two-fold activation of dCK. This activation process was inhibited by pifithrin-alpha, a potent inhibitor of p53. When the dNTP pools were determined, both deoxypyrimidine triphosphate and dGTP pools were reduced after the treatments, while dATP levels elevated by 62%, 77% and 50% in the CdA, aphidicolin and etoposide-treated cells, respectively. We assume that dCK activation elicited by cellular damage might be a proapoptotic factor in terms of generating dATP well before the release of cytochrome c and deoxyguanosine kinase from mitochondria.  相似文献   

16.
We tested whether increased endogenous adenosine produced by the adenosine kinase inhibitor GP-515 (Metabasis Therapeutics) can induce vascular endothelial growth factor (VEGF) expression in cultured rat myocardial myoblasts (RMMs). RMMs were cultured for 18 h in the absence (control) and presence of GP-515, adenosine (Ado), adenosine deaminase (ADA), or GP-515 + ADA. GP-515 (0.2-200 microM) caused a dose-related increase in VEGF protein expression (1.99-2.84 ng/mg total cell protein); control VEGF was 1.84 +/- 0.05 ng/mg. GP-515 at 2 and 20 microM also increased VEGF mRNA by 1.67- and 1. 82-fold, respectively. ADA (10 U/ml) decreased baseline VEGF protein levels by 60% and completely blocked GP-515 induction of VEGF. Ado (20 microM) and GP-515 (20 microM) caused a 59 and 39% increase in VEGF protein expression and a 98 and 33% increase in human umbilical vein endothelial cell proliferation, respectively, after 24 h of exposure. GP-515 (20 microM) had no effect on VEGF protein expression during severe hypoxia (1% O(2)) but increased VEGF by an additional 27% during mild hypoxia (10% O(2)). These results indicate that raising endogenous levels of Ado through inhibition of adenosine kinase can increase the expression of VEGF and stimulate endothelial cell proliferation during normoxic and hypoxic conditions.  相似文献   

17.
Rini D  Calabi F 《Gene》2001,267(1):13-22
Adenosine deaminase (ADA) catalyzes the hydrolysis of adenosine to inosine. Its lack determines severe combined immunodeficiency in mammals, possibly due to accumulation of extracellular adenosine, which induces apoptosis in lymphocytes (Franco et al., 1998). Thus, presence of normal levels of ADA leads to normal growth and proliferation of lymphocytes. Several vertebrate and microbial ADA amino-acid sequences are known, with substantial similarity to each other. On the other hand, there are invertebrate growth factors as well as a candidate gene for the human cat eye syndrome (CECR1) (Riazi et al., 2000. Genomics 64, 277-285), which share substantial similarity to each other, and also to ADA. In this study, we report the expression and ADA enzymatic activity of a cDNA from the salivary glands of Lutzomyia longipalpis, a blood-sucking insect, with substantial similarity to insect growth factors and to human CECR1. We also demonstrate the existence of a subfamily of the adenosine deaminase family characterized by their unique amino-terminal region. Both Drosophila melanogaster and humans have both types of adenosine deaminases. Results indicate that these invertebrate proteins previously annotated as growth factors, as well as the human CECR1 gene product, may exert their actions through adenosine depletion. The different roles played by each type of adenosine deaminase in humans and Drosophila remains to be fully investigated.  相似文献   

18.
Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression.  相似文献   

19.
The combination of 2'-deoxyadenosine and 2'-deoxycoformycin is toxic for the human colon carcinoma cell line LoVo. In this study we investigated the mode of action of the two compounds and have found that they promote apoptosis. The examination by fluorescence microscopy of the cells treated with the combination revealed the characteristic morphology associated with apoptosis, such as chromatin condensation and nuclear fragmentation. The occurrence of apoptosis was also confirmed by the release of cytochrome c and the proteolytic processing of procaspase-3 in cells subjected to the treatment. To exert its triggering action on the apoptotic process, 2'-deoxyadenosine enters the cells through an equilibrative nitrobenzyl-thioinosine-insensitive carrier, and must be phosphorylated by intracellular kinases. Indeed, in the present work we demonstrate by analysis of the intracellular metabolic derivatives of 2'-deoxyadenosine that, as suggested by our previous findings, in the incubation performed with 2'-deoxyadenosine and 2'-deoxycoformycin, an appreciable amount of dATP was formed. Conversely, when also an inhibitor of adenosine kinase was added to the incubation mixture, dATP was not formed, and the toxic and apoptotic effect of the combination was completely reverted.  相似文献   

20.
Ras is a well established modulator of apoptosis. Suppression of protein kinase C (PKC) activity can selectively induce apoptosis in cells expressing a constitutively activated Ras protein. We wished to determine whether reactive oxygen species serve as an effector of Ras-mediated apoptosis. Ras-transformed NIH/3T3 cells contained higher basal levels of intracellular H(2)O(2) compared with normal NIH/3T3 cells, and PKC inhibition up-regulated ROS to 5-fold greater levels in Ras-transformed cells than in normal cells. Treatment with N-acetyl-l-cysteine reduced both the basal and inducible levels of intracellular H(2)O(2) in NIH/3T3-Ras cells and antagonized the induction of apoptosis by PKC inhibition. Culturing NIH/3T3-Ras cells in low oxygen conditions, which prevents ROS generation, also inhibited the apoptotic response to PKC inhibition. These results suggest that reactive oxygen species are necessary as downstream effectors of the Ras-mediated apoptotic response to PKC inhibition. However, the generation of ROS alone is not sufficient to induce apoptosis in Ras-transformed cells because inhibition of cell cycle progression prevented the induction of apoptosis in NIH/3T3-Ras cells without inhibiting the generation of intracellular H(2)O(2) observed after PKC inhibition. These findings suggest that continued cell cycle progression of Ras-transformed cells during PKC inhibition is also necessary for the induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号