首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two diastereomers were produced by the introduction of azobenzene-tethering prochiral linker (2,2-bis(hydroxymethyl)propionic acid) in the modified ODN, which had been used for the photoregulation of DNA functions. We found that this modified ODN with sequence 5'-...pNpXpN...-3' (p = phosphate; N = nucleoside; X = azobenzene residue) could be digested to pX (the phosphate at the 5' side of X was left) by an over excess of Phosphodiesterase I. By comparing the retention time of pX from the separated diastereomer with that of authentic R- or S-pX on chiral HPLC, absolute configuration could be easily determined.  相似文献   

2.
化学修饰对反义寡核苷酸稳定性及抗流感病毒活性的影响   总被引:1,自引:0,他引:1  
为了探讨 A S O D N 化学修饰形式与 A S O D N 稳定性,体外细胞毒性以及抗流感病毒活性之间的关系,合成了 7 种不同化学修饰形式的 A S O D N:硫代 A S O D N 及其 3′端分别磷酸化和胆固醇修饰;3′与 5′端硫代,中间为天然结构的混合骨架 A S O D N;天然结构 A S O D N 及其 3′端分别磷酸化和胆固醇修饰等.测定了 7 种修饰体在小鼠血清, M D C K 细胞裂解液,含 2% 胎牛血清的 D M E M培养液以及水中的稳定性,体外细胞毒性和在细胞水平抗流感病毒活性.结果表明,混合骨架 A S O D N,硫代 A S O D N 及其 3′端接磷酸和胆固醇的修饰形式在小鼠血清, M D C K 细胞裂解液与含2% 胎牛血清的 D M E M 培养液中稳定性相对较高,作用 24~48 h 仅混合骨架 A S O D N 与硫代 A S O D N 发生部分降解;天然结构 A S O D N 及其 3′端接磷酸和胆固醇修饰体在 24 h 内大部分降解.所有 A S O D N 修饰体在水中具有很高稳定性,48 h 内未见降解作用.7 种 A S O D N 修饰形式在 M D C K 细胞中未表现明显的细胞毒性.硫代 A S O D N 及其 3′端接磷酸和胆  相似文献   

3.
Li H  Chi CY  Lee S  Andrisani OM 《Journal of virology》2006,80(21):10554-10564
The hepatitis B virus (HBV) X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. pX variants encoded by HBV genomes found integrated in genomic DNA from liver tumors of patients with hepatocellular carcinoma (HCC) generally lack amino acids 134 to 154. Since deregulation of mitogenic pathways is linked to oncogenic transformation, herein we define the pX region required for mitogenic pathway activation. A series of pX deletions was used to construct tetracycline-regulated pX-expressing cell lines. The activation of the mitogenic pathways by these pX deletions expressed in the constructed cell lines was measured by transient transreporter assays, effects on endogenous cyclin A expression, and apoptosis. Conditional expression of pX51-140 in AML12 clone 4 cell line activates the mitogenic pathways, induces endogenous cyclin A expression, and sensitizes cells to apoptosis, similar to wild-type (WT) pX. By contrast, pX1-115 is inactive, supporting the idea that amino acids 116 to 140 are required for mitogenic pathway activation. Moreover, this pX deletion analysis demonstrates that WT pX function is modulated by two regions spanning amino acids 1 to 78 and 141 to 154. The N-terminal X1-78, expressed via a retroviral vector in WT pX-expressing 4pX-1 cells, coimmunoprecipitates with WT pX, indicating this pX region participates in protein-protein interactions leading to pX oligomerization. Interestingly, pX1-78 interferes with WT pX in mediating mitogenic pathway activation, endogenous gene expression, and apoptosis. The C-terminal pX region spanning amino acids 141 to 154 decreases pX stability, determined by pulse-chase studies of WT pX and pX1-140, suggesting that increased stability of naturally occurring pX variants lacking amino acids 134 to 154 may play a role in HCC development.  相似文献   

4.
An oligodeoxyribonucleotide (ODN) containing three C5-substituted arabinofuranosyluracils was synthesized by the post-synthetic modification method from the ODN containing three C5-substituted 2,2'-anhydrouridines. The stability of the modified ODN/DNA duplex was lower than that of the corresponding normal duplex but that of the modified ODN/RNA duplex showed little change. The modified ODN could induce RNase H activity and was resistant against nuclease.  相似文献   

5.
The ability of T4 polynucleotide kinase (PNK) to phosphorylate non-nucleosidic moieties 5'-attached to oligodeoxynucleotides (ODNs) has been investigated. Non-nucleosidic phosphoramidite units were prepared from ethane-1,2-diol and propane-1,3-diol backbones. Some of them corresponded to pure enantiomers. They were used to obtain the corresponding 5'-end modified oligothymidylates X(pdT)10. The free primary hydroxyl of the non-nucleosidic moieties (X) of these oligomers was phosphorylated by PNK. We report the stereoselective phosphorylation of the L form of the 5'-end attached non-nucleosidic chiral fragments; the non-chiral moieties were completely phosphorylated. Dimers of glycerol analogue and thymidine 3'-phosphate were not recognized by PNK and the shortest modified ODN able to be phosphorylated was a trinucleotide X(pdT)3. A modified X(pdT)10, bearing a cyclic abasic site (X) at its 5'-end, was prepared by chemical synthesis from 1,2-dideoxyribose phosphoramidite and was phosphorylated with a 90% yield.  相似文献   

6.
Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide were undertaken to evaluate a gamma ray emitting ODN ligand for thrombus imaging in vivo . Synthesis of the ODN was based on modified automatedbeta-cyanoethyl phosphoramidite chemistry with an organotin nucleoside (dU*) coupled to a thrombin binding aptamer sequence to give d(U*GGTTGGTGTGGTTGG). The synthesis accommodated dU*, which is destannylated by iodine or acids. Fourteen standard synthesis cycles were followed by one 'stannyl synthesis cycle', distinguished by Fmoc protection, omission of capping, oxidation by an organic peroxide and cleavage by ammonium hydroxide. The organotin nucleoside phosphoramidite ¿5'-[fluorenylmethoxycarbonyl]-5-(E)-[2-tri-n -butylstannylvinyl]-2'-deoxyuridine-3'-(2-cyanoethyl N,N-diisopropyl phosphoramidite)¿ was prepared from 5-iodo-2'-deoxyuridine. A customized mild rapid workup included deprotection with methylamine, and reverse phase HPLC with CH3CN/triethylammonium bicarbonate. Pure stannyl ODN was highly retained by reverse phase HPLC. Radioiodination of stannyl ODN (100 microg) provided 123I-labeling yields up to 97%. Five alternative oxidants were effective. High specific activity [123I]- ODN (15 000 Ci/mmol) was recovered, separated from unlabeled isomers. Excellent reverse phase HPLC resolution of ODN isomers (alternatively I, Cl, H or Br in vinyl deoxyuridine) was essential. The affinity of the iodovinyl aptamer analog (Kd = 36 nM) for human alpha-thrombin was similar to the native aptamer (Kd = 45 nM).  相似文献   

7.
Abstract

2′,5′-Oligoadenylate 5′-triphosphates (2-5A) as products of 2-5A synthetase and activators of ribonuclease L (RNase L), are mediators in one of the mechanisms of interferon′s antiviral action. Upon activation, RNase L inhibits protein synthesis due to the degradation of RNAs. This activity of 2-5A could possibly find an application in virus or cancer chemotherapy, but two major barriers prevent the use of 2′,5′-linked oligoadenylates as therapeutic agents. The 2-5A is readily degraded by a 2′,5′ phosphodiesterase and as a highly negatively charged molecule, is not readily taken up by cells. One possible solution to this latter limitation might be found in chemical modifications of the 2-5A structure. Many analogues of 2-5A have been already obtained with modified base, ribose or phosphate moieties. While these have provided some important information about the enzyme- activator interactions, the cell permeability problem still remains unsolved. One of the major obstacles in this study is lack of a convenient method of synthesis of 2′,5′ ribonucleotides of widely varying structure.  相似文献   

8.
9.
Abstract

2′-Deoxycytidine hemidihydrogenphosphate has been crystallized in the hexagonal space group P62 with α=25.839(3), c = 12.529(1) Å. The structure has been solved using the Patterson search method. The asymmetric unit contains two protonated, base-paired 2′-deoxycytidine dimers and two H2PO4 ? anions. The C+·C base pairs are composed of a protonated and a neutral species each and are triple H-bonded, the central N(3)…N(3) bonds being 2.850(7) and 2.884(5) Å. The conformations of the four nucleosides fall in the same category (sugar puckers 2·-endo, glycosidic links anti) but in one of them the glycosidic torsion angle is quite low with consequences in other geometrical parameters. The H2PO4 ? anions are located on twofold axes and form two types of tight columns with P…P separations about 4.18 Å The neighboring units along a column are linked via two very short O…H…O hydrogen bonds (O…O about 2.49 Å) leading to effective equalization of the P-O bonds. The base pairs of the two dC+·dC cations are coplanar and form layers perpendicular to the phosphate columns repeating every c/3. Within the layers, the dimers form a network through 0(5′)…O(2) hydrogen bonds but their primary intermolecular interactions have the form of H-bond anchors [N(4)-H…O-P and 0(3′)-H…O-P] to the phosphate groups.  相似文献   

10.
Sequence analysis of oligodeoxyribonucleotides by mass spectrometry   总被引:3,自引:0,他引:3  
  相似文献   

11.
The segregational stability of a small, theta-replicating, non-mobilizable shuttle plasmid (pAEX-5E) was determined in fully virulent (pX01+/pX02+), partially cured (pX01+/pX02- and pX01-/pX02+) and fully cured (pX01-/pX02-) derivatives of Bacillus anthracis var. New Hampshire. Under the growth conditions used (L-broth, 37 degrees C, aerobic, batch culture), pAEX-5E remained segregationally stable in the pX01-/pX02+ and pX01-/pX02- derivatives for in excess of 100 culture generations, but was expelled from the pX01+/pX02+ and pX01+/pX02- derivatives (100% loss occurred after 101+/-3.8 and 54+/-6.0 culture generations, respectively). In the presence of antibiotic selection pressure to maintain pAEX-5E (5 microg erythromycin ml-1) no comparable loss of pX01 or pX02 was observed over 100 generations of growth in any of the derivatives of B. anthracis. Under these conditions the pX01+/pX02- derivative had an extended culture doubling time (td+/-S. E. of the mean) of 75.3 +/- 1.4 min compared with 47.3 +/- 1.1, 46.2 +/- 0.86 and 43.2 +/- 1.2 min for the pX01+/pX02+, pX01-/pX02+ and pX01-/pX02- derivatives, respectively. That antibiotic resistance was pAEX-5E-mediated was confirmed using a second antibiotic marker (kanamycin). After100 generations of growth in the presence of erythromycin, colonies were shown to have retained kanamycin resistance. Southern blot analysis, in conjunction with plasmid rescue to Escherichia coli confirmed that, after 100 culture generations in the presence of antibiotic selection pressure, pAEX-5E had remained structurally stable and had not integrated into the B. anthracis genome.  相似文献   

12.
DNA methylation in Bacillus amyloliquefaciens strain H (Bam)2 and Bacillus brevis (Bbv) has been examined by a variety of techniques. In vivo labelling studies revealed that Bam DNA contains no N6-methyladenine (MeAde), but contains 5-methylcytosine (MeCyt); approximately 0·7% of the cytosine residues are methylated.DNA methylase activity was partially purified from both Bam and Bbv; the Bam enzyme preparation transferred methyl groups from S-adenosyl-l-[methyl-3H]methionine ([3H]AdoMet) to specific DNA cytosine residues only; in agreement with Vanyushin & Dobritsa (1975), the Bbv enzyme preparation methylated both DNA adenine and cytosine residues. The (partial) sequence specificity of the methylases was determined by analyzing [3H]methyl-labelled dinucleotides obtained from enzymatic digests of DNA methylated in vitro. Bam and Bbv each contain a DNA-cytosine methylase with overlapping sequence specificity; e.g. both enzymes produce G-C1, C1-A and C1-T. This is consistent with a single, twofold symmetrical methylation sequence of 5′ … G-C1-(A or T)-G-C … 3′; this was observed by Vanyushin & Dobritsa (1975) for a different Bbv strain. Bam contains a second DNA-cytosine methylase (not present in Bbv), which produces T-C1 and C1-T. We propose that this methylase is the BamI modification enzyme, and that the modified sequence is 5′ … G-G-A-T-C1-C … 3′.Bbv appears to contain two DNA-adenine methylases which produce the (partial) methylated sequences, 5′ … G-A1-T … 3′ and 5′ … A-A1-G … 3′, respectively; in the former case, all the G-A-T-C sites on Bbv DNA appear to be methylated.  相似文献   

13.
Abstract

ABSTRACT: 3′-Deoxy-(2′-5′) oligonucleotides bind selectively to complementary RNA but not to DNA. 3′-Deoxy-(2′-5′) phosphorothioate ODN chimeras embedded with a short stretch of 3′-5′ phosphorothioate cassette are potent inhibitors of steroid 5-α-reductasc expression with significantly less non-specific interactions in cell culture.  相似文献   

14.
15.
Detection of specific oligonucleotide (ODN) fragments has become an important field in many areas of biomedicine. We describe a novel ODN sensor based on electropolymerization of a conducting polymer (polypyrrole) in the presence of a sample containing ODN(s). The resulting trapped ODN(s) are then probed by addition of complimentary sequence ODN. By incorporating CdS nanoparticles with the probe, a significant improvement in sensor sensitivity was observed. Impedance spectroscopy suggested that optimal detection of hybridization occurred at frequencies>or=3000 Hz (for a 0.07 cm2 85 nm thick film). At these frequencies, the impedance signal was almost linear with the logarithm of ODN concentration in the range 3.7-370 nM with a detection limit of approximately 1 nM ODN (for the sensor fabricated). Importantly, the sensor could be regenerated by removing hybridized ODN with NaOH suggesting possibility of the sensor re-use.  相似文献   

16.
Abstract

4-thiouracil-2′-trifluorothioacetamide-3′, 5′-diacetyl-β-D-riboside is one of the modified thiouracil analogs synthesized in our institute. The determination of the crystal and molecular structure of this compound was carried out with a view to study the conformation of the molecule in the solid state as well as to investigate the conformations of the trifluoroacetamide and the acetyl substituents of the ribose and their effects on the conformation of the ribose ring. Crystals of 4-thiouracil-2′-trifluorothioacetamide-3′,5′- diacetyl-β-D-riboside are orthorhombic, space group P21 21 21, with cell dimensions a= 15.351 (2), b= 15.535 (1), c= 8.307 (1) Å, V=1981.0 (7) Å3, Z=4, Dm= 1.53, Dc=1.527 g/c.c. and μ=30.1cm -1. The structure was determined using CuKα (λ, =1.5418 Å) at a temperature T of 297K, with 2333 reflections, which were collected on a Enraf-Nonius CAD-4 diffactometer, out of which 2249 (I ≥20) were considered observed. The structure was determined by direct methods using MULTAN and refined by full matrix least squares method to a final reliability factor of 0.054 and a weighted R factor of 0.079. The nucleoside is in the anti conformation [XCN =51.4 (5)°], the ribose has the unusual C (2′) endo -C (1′) exo (2T1), and a g+ conformation [ψ=47.5 (4)] across C(4′)-C(5′) bond. The pseudorotation angle P is 152.8 (4) ° and the amplitude of pucker τm of 42.7 (3)°. The average C-F bond distance is 1.308 Å. There is no base pairing and the typical base-base hydrogen bonded interactions are not present in this structure. On the other hand, a hydrogen bonded dimer is formed involving C(3′) - H(3′)… O (2) and N(3) -H (N3) … O (Al) hydrogen bonds joining the base, ribose ring and the acetyl group. The trend towards longer exocyclic bonds at the acetyl centers in compounds with strongly electronegative aglycones, is also exhibited in this compound, with C(3′)-O(3′) and C(5′)-0(5′) being much longer than C(1′)-O(4′). The acetyl groups also take part in C-H…O hydrogen bonding with the acetyl oxygen atom OA2.  相似文献   

17.
18.
Abstract

One of the most important mediators in the mode of action of interferon is the (2′-5′)(A)n synthetase-RNase L pathway. The 2′-5′oligoadenylates (2–5A), synthesized from ATP, activate a pre-existing endonuclease that cleaves single-stranded RNA. The biological activity of 2–5A is rapidly lost due to cleavage of the 2′-5′ internucleotide bond by a specific 2′-5′-phosphodiesterase starting at the 3′end. This rapid cleavage and the poor uptake of 2–5A in intact cells limit the use of 2–5A as an antiviral or antineoplastic agent. Although several modified 2–5A analogues have been synthesized in order to improve the enzymatic stability, only few have proven to be resistant to degradation and still able to activate the 2–5A dependent endonuclease. 1-4 On the other hand, relative drastic methodology such as calcium coprecipitation, microinjection and liposome encapsulation5 has been used to introduce 2–5A into intact cells. Here, we present the synthesis and biological activity of oligoadenylates in which one or more adenosine residues were replaced by 9-(3-azido-3-deoxy-6-D-xylofuranosyl)adenine or 9-(3-amino-3-deoxy-D-xylofuranosyl)adenine. The oligonucleotides were synthesized by the phosphotriester method with triisopropylbenzenesulfonyl-chloride in the presence of N-methylimidazole as the condensing agent. The p-nitrophenylethyl group was used as the protecting group for the 2′-hydroxylfunction .(carbonate), the internucleotide linkage (phosphate ester) and the exocyclic amino groups of the heterocyclic base (carbamate). Bis(p-nitrophenylethy1)phosphoromonochloridate was used to phosphorylate the 5′-hy-droxyl group. All these blocking groups were removed with DBU in pyridine.  相似文献   

19.
We report here an investigation into the correlation between dihydrogen bond energies, three-centre bond indices and group indices in some dihydrogen-bonded dimers. This kind of bond is generated by interaction between proton-donator and proton-acceptor groups, XHσ+…H′σ ? M, where X is a more electronegative atom and M a less electronegative atom than hydrogen. The different electronegativities of the X atoms, as well the M atoms, would affect the correlations between Hσ+…H′σ ?  distances and bond energies of these systems. In this work it will be shown that three-centre bond indices and group indices exhibit a better correlation with bond energies when compared to Hσ+…H′σ ?  distances for this kind of system.  相似文献   

20.
Abstract

5′-Phosphonates of natural 2′-deoxynucleosides and ribonucleosides were synthesized by condensation of 3′-O-acylated 2′-deoxynucleosides or 2′,3′-substituted (2′,3′-O-isopropylidene, 2′,3′-O-methoxymethylene or 2′,3′-O-ethoxymethylene) ribonucleosides. As condensing agents, either N,N′-dicyclohexylcarbodiimide or 2,4,6-triisopropylbenzenesulphonyl chloride were used. Nucleoside 5′-ethoxycarbonylphosphonates were converted into corresponding nucleoside 5′-aminocarbonylphosphonates by action of ammonia in methanol or aqueous ammonia. 5′-Hydrogenphosphonothioates of thymidine and 3′-deoxythymidine were obtained by reaction of phosphinic acid in the presence of pivaloyl chloride with 3′-O-acetylthymidine or 3′-deoxythymidine, respectively, followed by addition of powedered sulfur. 5′-O-methylenephosphonates of thymidine and 2′-deoxyadenosine were prepared by intramolecular reaction of corresponding 3′-O-iodomethylphosphonates under basic conditions. All compounds were tested for inhibition of several viruses, including HSV-2 and CMV, but showed no activity. A few compounds insignificantly inhibited HIV-1 reproduction. Thymidine 5′-hydrogenphosphonate neutralized anti-HIV action of 3′-azido-3′-deoxythymidine (AZT) and it indirectly showed that even some nucleoside 5′-phosphonates could be partly hydrolyzed in cell culture to corresponding nucleosides.

5′-Phosphonates of modified 2′-deoxynucleosides in which one group in a phosphate residue is substituted for hydrogen, alkyl or other groups, have shown to be potent biologically  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号