首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Telomerase, responsible for telomere synthesis, is expressed in approximately 90% of human tumor cells but seldom in normal somatic cells. In this study, inhibition by carbocyclic oxetanocin G triphosphate (C. OXT-GTP) and its analogues was investigated in order to clarify the susceptibility of telomerase to various nucleotide analogues. C. OXT-GTP competitively inhibited telomerase activity with respect to dGTP However, C. OXT-GTP had a potent inhibitory effect on DNA polymerase alpha. It was examined whether the nucleoside (C. OXT-G) was able to alter telomere length in cultured human HL60 cells. Contrary to expectation, long-term treatment with 10 microM C. OXT-G was found to cause telomere lengthening.  相似文献   

2.
Oxetanocin G(9-(2-deoxy-2-hydroxymethyl-beta-D-erythro-oxetanosyl)guanine, OXT-G) is a potent and selective agent against human cytomegalovirus (HCMV). In this study we synthesized the triphosphate form of OXT-G, OXT-GTP, and examined its effect on the activities of HCMV DNA polymerase, herpes simplex type 2 (HSV-2) DNA polymerase and human DNA polymerase alpha. OXT-GTP was found to inhibit all these polymerases in a competitive manner with respect to dGTP. The Km for dGTP and the Ki for OXT-GTP of HCMV DNA polymerase were 0.86 and 0.53 mu M, respectively, while the corresponding values of DNA polymerase alpha were 2.2 and 3.6 mu M, respectively. HPLC analysis using [3H]OXT-G also revealed that OXT-G was converted to its triphosphate form 7- to 8-fold more efficiently in HCMV-infected cells than in uninfected cells. The results suggest that both the preferential phosphorylation of OXT-G in HCMV-infected cells and the preferential inhibition of HCMV DNA polymerase by OXT-GTP may contribute towards the selective activity of OXT-G against HCMV replication.  相似文献   

3.
摘要:端粒是位于染色体末端的特殊核蛋白复合物,其高度保守的重复序列和蛋白复合物形成保护环结构,以维持线性染色体的稳定性和完整性。端粒酶通过添加富含鸟嘌呤的重复序列,在维持和调节端粒长度、细胞永生性和衰老中起着重要作用。通过研究病变细胞的端粒长度变化趋势和端粒酶活性,可为选择端粒酶作为治疗癌症的标记物提供理论参考。本文针对端粒、端粒酶的结构和日常作用机理,以及它们在肝细胞癌中的研究进展进行综述,以期有助于恶性肿瘤和代谢性疾病的预防、诊断和治疗。  相似文献   

4.
摘要:随着细胞生理性衰老,端粒(telomere)即染色体末端的重复性 DNA 序列会出现累积性损伤,而血管内皮细胞、平滑肌细胞衰老相关的端粒损伤和修复则被认为是退行性血管疾病发病的分子机制之一。胸主动脉瘤为老年人群中的重要致死性疾病之一,与衰老相关的退行性变在其中发挥着重要的作用。因此本文主要对端粒/端粒酶在胸主动脉瘤发病和进展中的作用做了概述,总结了血管病理学中端粒/端粒酶的调控机制。  相似文献   

5.
6.
7.
8.
9.
10.
Here we demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) C1 and C2 can associate directly with the integral RNA component of mammalian telomerase. The binding site for hnRNPs C1 and C2 maps to a 6-base uridylate tract located directly 5' to the template region in the human telomerase RNA (TR) and a 4-base uridylate tract directly 3' to the template in the mouse TR. Telomerase activity is precipitated with antibodies specific to hnRNPs C1 and C2 from cells expressing wild-type human TR but not a variant of the human TR lacking the hnRNPs C1 and C2 binding site, indicating that hnRNPs C1 and C2 require the 6-base uridylate tract within the human TR to associate with the telomerase holoenzyme. In addition, we demonstrate that binding of hnRNPs C1 and C2 to telomerase correlates with the ability of telomerase to access the telomere. Although correlative, these data do suggest that the binding of hnRNPs C1 and C2 to telomerase may be important for the ability of telomerase to function on telomeres. The C proteins of the hnRNP particle are also capable of colocalizing with telomere binding proteins, suggesting that the C proteins may associate with telomeres in vivo. Therefore, human telomerase is capable of associating with core members of the hnRNP family of RNA binding proteins through a direct and sequence-specific interaction with the human TR. This is also the first account describing the precise mapping of a sequence in the human TR that is required to associate with an auxiliary component of the human telomerase holoenzyme.  相似文献   

11.
Telomerase catalytic subunit (TERT) seems a key factor controlling telomerase activity, telomere length, and cell growth. To further address this issue, we forced expression of a catalytically inactive mutant human TERT (hTERT) in hTERT-immortalised sheep fibroblasts to examine its effects. Expression of mutant hTERT compromised telomerase activity reconstituted by wild-type hTERT in a manner directly attributable to mutant hTERT expression level. High levels of mutant hTERT expression inhibited cell growth with a subset of cells entering replicative senescence. Furthermore, significant telomere attrition was evident in two of three clones with high levels of mutant hTERT expression. Our findings are consistent with the notion that hTERT homodimers are necessarily required to form a functional telomerase complex at the telomere substrate. We also highlight the requirement of a more thorough understanding of telomerase- and telomere-associated factors to understand fully the interplay that governs telomere homeostasis in vitro and in vivo.  相似文献   

12.
Purpose: CD4+CD25+ regulatory T-cells (Treg) are increased in the peripheral blood of cancer patients. It remains unclear whether this is due to redistribution or active proliferation. The latter would require the upregulation of telomerase activity, whose regulation also remains unknown for Treg. Experimental Design: Treg and CD4+CD25 T-cells were isolated from peripheral blood of cancer patients (n=23) and healthy age-matched controls (n=17) and analyzed for their content of T-cell receptor excision circles (TREC) and for telomere length using flow-FISH, real-time PCR and Southern blotting. The in vitro regulation of telomerase of Treg was studied using PCR-ELISA in bulk cultures as well as in isolated proliferating and non-proliferating Treg. Results: Treg isolated from peripheral blood of cancer patients exhibit significantly decreased levels of TREC when compared to Treg from healthy controls. Despite their in vivo proliferation, telomere length is not further shortened in Treg from cancer patients. Accordingly, telomerase activity of Treg was readily inducible in vitro. Notably, sorting of in vitro proliferating Treg revealed a significant telomere shortening in Treg with high-proliferative capacity. The latter are characterized by shortened telomeres despite high telomerase activity. Conclusions: Increased frequencies of Treg in peripheral blood of cancer patients are due to active proliferation rather than due to redistribution from other compartments (i.e., secondary lymphoid organs or bone marrow). In vivo expansion does not further shorten telomere length, probably due to induction of telomerase activity. In contrast, under conditions of strong in vitro stimulation telomerase induction seems to be insufficient to avoid progressive telomere shortening.Herbert Tilg and Anna M. Wolf share senior authorship  相似文献   

13.
端粒酶活性调节的分子机制   总被引:4,自引:0,他引:4  
Liu WJ  Ding J 《生理科学进展》2001,32(3):220-224
人端粒酶由RNA亚基、hTERT催化亚基和hTEP1调节蛋白等组成。端粒酶对端粒结构的稳定起着重要的作用,而端粒结构和端粒结合蛋白也影响着端粒酶活性。某些化疗药物通过破坏端粒结构下调端粒酶活性。端粒酶的激活需要hTERT基因的从头转录和各个蛋白亚基正确装配为端粒酶全酶。端粒酶活性调节的分子机制包括:(1)TERT基因的表达和转录是决定端粒酶活性的重要环节,受多种因素调控;(2)蛋白激酶Cα和蛋白激酶B磷酸化端粒酶蛋白而激活端粒酶,蛋白磷酸酯酶2A(PP2A)可逆转这一过程,下调端粒酶活性;(3)多种癌基因和抑癌基因及其编码的蛋白质也直接或间接与端粒蛋白、端粒酶蛋白反应,参与端粒酶活性的调控。  相似文献   

14.
Pif1 family helicases are evolutionary conserved 5′–3′ DNA helicases. Pfh1, the sole Schizosaccharomyces pombe Pif1 family DNA helicase, is essential for maintenance of both nuclear and mitochondrial DNAs. Here we show that its nuclear functions include roles in telomere replication and telomerase action. Pfh1 promoted semi-conservative replication through telomeric DNA, as replication forks moved more slowly through telomeres when Pfh1 levels were reduced. Unlike other organisms, S. pombe cells overexpressing Pfh1 displayed markedly longer telomeres. Because this lengthening occurred in the absence of homologous recombination but not in a replication protein A mutant (rad11-D223Y) that has defects in telomerase function, it is probably telomerase-mediated. The effects of Pfh1 on telomere replication and telomere length are likely direct as Pfh1 exhibited high telomere binding in cells expressing endogenous levels of Pfh1. These findings argue that Pfh1 is a positive regulator of telomere length and telomere replication.  相似文献   

15.
Telomere dysfunction-induced loss of genome integrity and its associated DNA damage signaling and checkpoint responses are well-established drivers that cause tissue degeneration during ageing. Cancer, with incidence rates greatly increasing with age, is characterized by short telomere lengths and high telomerase activity. To study the roles of telomere dysfunction and telomerase reactivation in ageing and cancer, the protocol shows how to generate two murine inducible telomerase knock-in alleles 4-Hydroxytamoxifen (4-OHT)-inducible TERT-Estrogen Receptor (mTERT-ER) and Lox-Stopper-LoxTERT (LSL-mTERT). The protocol describes the procedures to induce telomere dysfunction and reactivate telomerase activity in mTERT-ER and LSL-mTERT mice in vivo. The representative data show that reactivation of telomerase activity can ameliorate the tissue degenerative phenotypes induced by telomere dysfunction. In order to determine the impact of telomerase reactivation on tumorigenesis, we generated prostate tumor model G4 PB-Cre4 PtenL/L p53L/L LSL-mTERTL/L and thymic T-cell lymphoma model G4 Atm-/- mTERTER/ER. The representative data show that telomerase reactivation in the backdrop of genomic instability induced by telomere dysfunction can greatly enhance tumorigenesis. The protocol also describes the procedures used to isolate neural stem cells (NSCs) from mTERT-ER and LSL-mTERT mice and reactivate telomerase activity in NSCs in vitro. The representative data show that reactivation of telomerase can enhance the self-renewal capability and neurogenesis in vitro. Finally, the protocol describes the procedures for performing telomere FISH (Fluorescence In Situ Hybridization) on both mouse FFPE (Formalin Fixed and Paraffin Embedded) brain tissues and metaphase chromosomes of cultured cells.  相似文献   

16.
Expression of the catalytic subunit of human telomerase, hTERT, extends human primary fibroblast life span. Such life span extension has generally been reported to be accompanied by net telomere lengthening, which led to the hypothesis that it is the telomere lengthening that causes the life span extension. Here we show that hTERT+C and hTERT-FlagC, mutant telomerase proteins with either 10 additional residues or a FLAG epitope added to the hTERT C-terminus, confer significant but limited life span extension to IMR90 human primary lung fibroblasts. However, as the cells continue to grow for >100 population doublings past their normal senescence point, bulk telomere length continues to erode to lengths much shorter than those seen at the senescence of control telomerase-negative cells. Expression of hTERT+C immortalized IMR90 cells transformed by three different oncogenes. Again, bulk telomeres became much shorter than those of the control cells at crisis. Additional hTERT mutants were constructed and analyzed similarly. Enzymatically active hTERT-N125A+T126A, like other previously reported conserved GQ domain mutants and C-terminally HA-tagged hTERT, failed to extend life span. Another GQ domain mutant, hTERT-E79A, was indistinguishable from wild-type hTERT in its cell growth effects, but there was no net telomere lengthening. These results uncover further hTERT allele-specific phenotypes that uncouple telomerase activity, net telomere lengthening and life span extension.  相似文献   

17.
Dyskeratosis congenita (DC) is a progressive and heterogeneous congenital disorder that affects multiple systems and is characterized by bone marrow failure and a triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. One common feature for all DC patients is abnormally short telomeres and defects in telomere biology. Most of the known DC mutations have been found to affect core components of the telomerase holoenzyme. Recently, multiple mutations in the gene encoding the telomeric protein TIN2 have been identified in DC patients with intact telomerase genes, but the molecular mechanisms underlying TIN2 mutation-mediated DC remain unknown. Here, we demonstrate that ectopic expression of TIN2 with DC missense mutations in human cells led to accelerated telomere shortening, similar to the telomere phenotypes found in DC patients. However, this telomere shortening was not accompanied by changes in total telomerase activity, localization of TIN2, or telomere end protection status. Interestingly, we found TIN2 to participate in the TPP1-dependent recruitment of telomerase activity. Furthermore, DC mutations in TIN2 led to its decreased ability to associate with TERC and telomerase activity. Taken together, our data suggest that TIN2 mutations in DC may compromise the telomere recruitment of telomerase, leading to telomere shortening and the associated pathogenesis.  相似文献   

18.
LPTS/PinX1, a telomerase inhibitor composed of 328 amino acids, binds to the telomere associated protein Pin2/TRF1 and to the telomerase catalytic subunit hTERT. However, the mechanism by which LPTS/PinX1 regulates telomerase activity remains unclear. Here we show, for the first time, that LPTS/PinX1 uses different domains to interact with Pin2/TRF1 and hTERT. The LPTS/PinX1254-289 fragment specifically binds to Pin2/TRF1, and LPTS/PinX1290-328 can associate with hTERT. Compared with the full-length LPTS/PinX1 protein, LPTS/PinX1290-328 shows stronger in vitro telomerase inhibitory activity. Moreover, the LPTS/PinX1 protein was recruited to telomeres for binding to Pin2/TRF1. Overexpression of LPTS/PinX1290-328, which contains a nucleolus localization signal, in cells resulted in telomere shortening and progressive cell death. Conversely, telomere elongation was induced by expression of the dominant-negative LPTS/PinX11-289. Our results suggest that the C-terminal fragment of LPTS/PinX1 (LPTS/PinX1290-328) contains a telomerase inhibitory domain that is required for the inhibition of telomere elongation and the induction of cell crisis. Our studies also provide evidence that LPTS/PinX1 interaction with Pin2/TRF1 may play a role in the stabilization of telomeres.  相似文献   

19.
Telomere and telomerase in oncology   总被引:10,自引:0,他引:10  
Telomere and cell replicative senescenceTelomeres, which are located at the end of chro-mosome, are crucial to protect chromosome againstdegeneration, rearrangment and end to end fusion[1].Human telomeres are tandemly repeated units of thehexanucleotide TTAGGG. The estimated length oftelomeric DNA varies from 2 to 20 kilo base pairs,depending on factors such as tissue type and hu-man age. The buck of telomeric DNA is double-stranded, but the end of telomeric DNA consists of3' overhang of…  相似文献   

20.
Circadian clocks are fundamental machinery in organisms ranging from archaea to humans. Disruption of the circadian system is associated with premature aging in mice, but the molecular basis underlying this phenomenon is still unclear. In this study, we found that telomerase activity exhibits endogenous circadian rhythmicity in humans and mice. Human and mouse TERT mRNA expression oscillates with circadian rhythms and are under the control of CLOCK–BMAL1 heterodimers. CLOCK deficiency in mice causes loss of rhythmic telomerase activities, TERT mRNA oscillation, and shortened telomere length. Physicians with regular work schedules have circadian oscillation of telomerase activity while emergency physicians working in shifts lose the circadian rhythms of telomerase activity. These findings identify the circadian rhythm as a mechanism underlying telomere and telomerase activity control that serve as interconnections between circadian systems and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号