首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solution of sulfur (0.1 M) and sodium sulfide (0.01M) in 3-picoline, referred to as polysulfide reagent, rapidly converts trialkyl and triaryl phosphite triesters to the corresponding phosphorothioate derivatives. Greater than 99.8% average stepwise sulfurization efficiency is obtained in the solid-phase synthesis of DNA and RNA phosphorothioate olgonucleotides via the phosphoramidite approach.  相似文献   

2.
Horton TE  Maderia M  DeRose VJ 《Biochemistry》2000,39(28):8201-8207
This study analyzes the impact of phosphorothioate substitutions on the thermodynamic stability of a 12-nt RNA hairpin containing a (5')GAAA(3') tetraloop. The thermodynamic consequences of stereospecific phosphorothioate substitutions 5' to each adenosine in the loop region are measured using optical melting and calorimetry experiments. Surprisingly, a single stereospecific phosphorothioate substitution 5' to the second adenosine of the tetraloop, R(p)-A7, results in a stabilization corresponding to a Delta(DeltaG(37)(degrees)(C)) of approximately -2.9 kcal mol(-1) (0.1 M NaCl) when compared with that of an unmodified sample. Five other phosphorothioate-substituted samples did not show significant thermodynamic differences in comparison with the unsubstituted samples. Addition of Mg(2+) to all of the hairpins studied results in increased t(m's) that are fit with a general electrostatic model to a dissociation constant of K(d)(Mg(2+)) approximately 2-3 mM (0.1 M NaCl). The R(p)-A7 phosphorothioate-substituted hairpin showed an unusual decrease in t(m) and apparent increase in enthalpy of unfolding upon addition of Cd(2+). These results may impact the interpretation of interference mapping experiments that use phosphorothioate substitutions to characterize RNAs in solution.  相似文献   

3.
The RF IV form of M13 DNA was synthesized enzymatically in vitro, using the viral (+)strand as template, to contain phosphorothioate-modified internucleotidic linkages of the Rp configuration on the 5' side of every base of a particular type in the newly-synthesized (-)strand. Twenty nine restriction enzymes were then tested for their reactions with the appropriate modified DNA types having a phosphorothioate linkage placed exactly at the cleavage site(s) of these enzymes in the (-)strand. Eleven of the seventeen restriction enzymes tested that had recognition sequences of five bases or more could be used to convert the phosphorothioate DNA entirely into the nicked form, either by simply allowing the reaction to go to completion with excess enzyme (Ava I, Ava II, Ban II, Hind II, Nci I, Pst I or Pvu I) or by stopping the reaction at the appropriate time before the nicked DNA is linearized (Bam HI, Bgl I, Eco RI or Hind III). Only modification of the exact cleavage site in the (-)strand could block linearization by the first class of enzymes. The results presented imply that the restriction enzyme-directed nicking of phosphorothioate M13 DNA occurs exclusively in the (+)strand.  相似文献   

4.
G3139, an antisense Bcl-2 phosphorothioate oligodeoxyribonucleotide, induces apoptosis in melanoma and other cancer cells. This apoptosis happens before and in the absence of the downregulation of Bcl-2 and thus seems to be Bcl-2-independent. Binding of G3139 to mitochondria and its ability to close voltage-dependent anion-selective channel (VDAC) have led to the hypothesis that G3139 acts, in part, by interacting with VDAC channels in the mitochondrial outer membrane (21). In this study, we demonstrate that G3139 is able to reduce the mitochondrial outer membrane permeability to ADP by a factor of 6 or 7 with a Ki between 0.2 and 0.5 µM. Because VDAC is responsible for this permeability, this result strengthens the aforesaid hypothesis. Other mitochondrial respiration components are not affected by [G3139] up to 1 µM. Higher levels begin to inhibit respiration rates, decrease light scattering and increase uncoupled respiration. These results agree with accumulating evidence that VDAC closure favors cytochrome c release. The speed of this effect (within 10 min) places it early in the apoptotic cascade with cytochrome c release occurring at later times. Other phosphorothioate oligonucleotides are also able to induce VDAC closure, and there is some length dependence. The phosphorothioate linkages are required to induce the reduction of outer membrane permeability. At levels below 1 µM, phosphorothioate oligonucleotides are the first specific tools to restrict mitochondrial outer membrane permeability. respiration; voltage-dependent anion-selective channel; apoptosis; cell death  相似文献   

5.
Although double-stranded DNA (dsDNA) has been shown to bind to zwitterionic lipids, it has been reported that this association is stronger for disordered (L(alpha)) phase lipids than for well-ordered (L(beta)) lipids. In this work, the interaction of single-strand phosphorothioate oligonucleotides (ONs) with unilamellar liposomes of saturated and unsaturated zwitterionic phosphocholines (PCs) and phosphoroethylamine (PE) was investigated. It is shown that the association of phosphorothioate ONs to diacyl glycerophosphocholines is strong, but only for L(beta) phase or otherwise ordered bilayers. There is no measurable affinity for PE lipids. The apparent affinity of three different phosphorothioate ONs for L(beta) phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) has been measured and the dissociation constants were on the order of 10(-7) M. Purine-rich ON sequences had stronger binding to DPPC liposomes than did pyrimidine-rich sequences, but there were other sequence-dependent factors. This exceptionally high affinity could be an important consideration in ON uptake, delivery, and biodistribution.  相似文献   

6.
The repair patch of E. coli (A)BC excinuclease.   总被引:3,自引:1,他引:2       下载免费PDF全文
The size of repair patch made by E. coli DNA polymerase I (Poll) following the removal of a thymine-psoralen monoadduct by E. coli (A)BC excinuclease was determined by using an M13mp19 DNA with a single psoralen monoadduct at the polylinker region. Incubation of this substrate with (A)BC excinuclease, Poll and a combination of 3 dnTP plus 1 dNTP(alpha S) for each nucleotide, and DNA ligase resulted in a repair patch with phosphorothioate linkages. The preferential hydrolysis of phosphorothioate bonds by heating in iodoethanol revealed a patch size--with minimal nick translation--equal in length to the 12 nucleotide gap generated by this excision nuclease.  相似文献   

7.
Cleavage of phosphorothioate-substituted DNA by restriction endonucleases   总被引:7,自引:0,他引:7  
M13 RF DNA was synthesized in vitro in the presence of various single deoxynucleoside 5'-O-(1-thiotriphosphate) phosphorothioate analogues, and the three other appropriate deoxynucleoside triphosphates using a M13 (+)-single-stranded template, Escherichia coli DNA polymerase I and T4 DNA ligase. The resulting DNAs contained various restriction endonuclease recognition sequences which had been modified at their cleavage points in the (-)-strand by phosphorothioate substitution. The behavior of the restriction enzymes AvaI, BamHI, EcoRI, HindIII, and SalI towards these substituted DNAs was investigated. EcoRI, BamHI, and HindIII were found to cleave appropriate phosphorothioate-substituted DNA at a reduced rate compared to normal M13 RF DNA, and by a two-step process in which all of the DNA is converted to an isolable intermediate nicked molecule containing a specific discontinuity at the respective recognition site presumably in the (+)-strand. By contrast, SalI cleaved substituted DNA effectively without the intermediacy of a nicked form. AvaI, however, is only capable of cleaving the unsubstituted (+)-strand in appropriately modified DNA.  相似文献   

8.
Duplex formation from the self-complementary 12mer d(CGCGAATTCGCG) (Dickerson dodecamer) in which all phosphodiester linkages were replaced by phosphorothioate or phosphorodithioate linkages was studied using variable-temperature 1H and 31P NMR spectroscopy. Melting temperatures of the dodecamer, measured spectrophotometrically, showed significant decrease upon sulfur substitution (Tm 49 degrees C for the phosphorothioate and 21 degrees C for the phosphorodithioate, compared with 68 degrees C for the unmodified oligomer, in 1 M salt). Hyperchromicity observed upon melting of the dithioate was surprisingly low. NOESY spectra of the monothioate showed a cross-peak pattern characteristic for a right-handed duplex. Imino proton resonances of the duplex, shown by the mono- and the dithioate, were similar to those of the parent compound. In spite of monophasic melting curves, temperature dependence of the imino proton resonances and phosphorus resonances of the phosphorodithioate indicated heterogeneity with respect to base-pairing, compatible with the presence of a hairpin loop. Relaxation times (T1) of the imino protons in the phosphorothioate, determined by the saturation recovery method, were considerably shorter than in the unmodified oligomer. Base-pair lifetimes in the unmodified Dickerson dodecamer, determined by catalyst-dependent changes in relaxation rates of imino protons, were in the range of 2-30 ms at 20 degrees C. Strongly reduced base-pair lifetimes were found in the phosphorothioate analogue.  相似文献   

9.
Diastereomerically pure, partially modified (in selected positions) or fully modified phosphorothioate oligomers of the [PS]-d(CG)(4) and [PS]-d(GC)(4) series were investigated with respect to their ability to adopt the left-handed conformation at high sodium chloride concentration. NaCl induces the B-Z transition of [All-S(P)R(P)-PS]-d(CG)(4) with a midpoint of transition at ca. 2 M, which is approximately 1 M less than for unmodified d(CG)(4). Also, [All-R(P)S(P)-PS]-d(GC)(4) at 5 M NaCl converts to the Z form to the extent of ca. 55%, while the unmodified d(GC)(4) counterpart does not convert at all. This enhanced ability of stereodefined phosphorothioate oligomers to adopt the Z conformation is discussed in terms of already known structural factors (hydrogen bonding and water bridges) facilitating the B-Z transition, identified for unmodified d(CG)(n) oligonucleotides. By CD spectroscopy, the [All-S(P)-PS]-d(CG)(4) oligomer at a NaCl concentration higher than 0.01 M adopts a unique conformation as assessed from the presence of an additional negative band centered at 282 nm.  相似文献   

10.
Phosphorothioate diester oligonucleotides proved to be fully compatible with maleimides in the context of two different conjugation reactions: (a) reaction of (5')diene-[phosphorothioate oligonucleotides] with maleimido-containing compounds to afford the Diels-Alder cycloadduct; (b) conjugation of (5')maleimido-[phosphorothioate oligonucleotides] with thiol-containing compounds. No evidence of reaction between phosphorothioate diesters and maleimides was found in any of these processes. Importantly, in the preparation of (5')maleimido-[phosphorothioate oligonucleotides] from [protected maleimido]-[phosphorothioate oligonucleotides], which requires the maleimide to be deprotected by retro-Diels-Alder reaction (heating for 3-4 h in toluene at 90 °C), no addition of phosphorothioate diester to the maleimide was found either. Finally, maleimide-[phosphorothioate monoester] conjugation was also explored for comparison purposes.  相似文献   

11.
We have developed a simple new method that can identify the base methylated by a sequence-specific DNA methyltransferase and have used it to identify the cytosine that is methylated by DsaV methyltransferase (M. DsaV) within its recognition sequence 5'-CCNGG. The method utilizes the fact that exonuclease III of E. coli does not degrade DNA ends with 3' overhangs and cannot hydrolyze a phosphorothioate linkage. DNA duplexes containing phosphorothioate linkages at specific positions were methylated with M. DsaV in the presence of [methyl-3H] S-adenosylmethionine and were subjected to exonuclease III digestion. The pattern of [methyl-3H] dCMP release from the duplexes was consistent with the methylation of the internal cytosine in CCNGG, but not of the outer cytosine. To establish the accuracy of this method, we confirmed the known specificity of EcoRII methyltransferase by the method. We also confirmed the specificity of M. DsaV using an established biochemical method that involves the use of a type IIS restriction enzyme. Methylation of CCWGG (W = A or T) sequences at the internal cytosines is native to E. coli and is not restricted by the modified cytosine restriction (Mcr) systems. Surprisingly, the gene for M. DsaV was significantly restricted by the McrBC system. We interpret this to mean that M. DsaV may occasionally methylate at sequences other than CCNGG or may occasionally methylate the outer cytosine in its recognition sequence.  相似文献   

12.
Mou TC  Gray CW  Terwilliger TC  Gray DM 《Biochemistry》2001,40(7):2267-2275
The gene 5 protein (g5p) of Ff bacteriophages is a well-studied model ssDNA-binding protein that binds cooperatively to the Ff ssDNA genome and single-stranded polynucleotides. Its affinity, K omega (the intrinsic binding constant times a cooperativity factor), can differ by several orders of magnitude for ssDNAs of different nearest-neighbor base compositions [Mou, T. C., Gray, C. W., and Gray, D. M. (1999) Biophys. J. 76, 1537-1551]. We found that the DNA backbone can also dramatically affect the binding affinity. The K omega for binding phosphorothioate-modified S-d(A)(36) was >300-fold higher than for binding unmodified P-d(A)(36) at 0.2 M NaCl. CD titrations showed that g5p bound phosphorothioate-modified oligomers with the same stoichiometry as unmodified oligomers. The CD spectrum of S-d(A)(36) underwent the same qualitative change upon protein binding as did the spectrum of unmodified DNA, and the phosphorothioate-modified DNA appeared to bind in the normal g5p binding site. Oligomers of d(A)(36) with different proportions of phosphorothioate nucleotides had binding affinities and CD perturbations intermediate to those of the fully modified and unmodified sequences. The influence of phosphorothioation on binding affinity was nearly proportional to the extent of the modification, with a small nearest-neighbor dependence. These and other results using d(ACC)(12) oligomers and mutant proteins indicated that the increased binding affinity of g5p for phosphorothioate DNA was not a polyelectrolyte effect and probably was not an effect due to the altered nucleic acid structure, but was more likely a general effect of the properties of the sulfur in the context of the phosphorothioate group.  相似文献   

13.
14.
The (Rp)- and (Sp)-diastereoisomers of thymidyl 3'-(4-nitrophenyl phosphorothioate) (1) were found to act as unusual substrates for acid deoxyribonuclease (DNase II). Instead of the expected thymidine 3'-phosphorothioate, the product resulting from the reaction of (Rp)-1 catalyzed by DNase II was identified as (Sp, Rp)-thymidyl (3'-5')thymidyl phosphorothioate 3'-(4-nitrophenyl phosphorothioate), while that from (Sp)-1 has been recognized as a 10:1 mixture of (Sp, Rp)-thymidyl (3'-5')thymidyl phosphorothioate 5'-(4-nitrophenyl phosphorothioate) and (Rp, Sp)-thymidyl (3'-5')-thymidyl phosphorothioate 3'-(4-nitrophenyl phosphorothioate), respectively. Both types of transnucleotidylations were found to occur with retention of configuration at phosphorus. Stereochemical results may be interpreted in terms of two step mechanisms involving the formation of the intermediate, covalent substrate enzyme complexes.  相似文献   

15.
A protocol relying on Sanger sequencing reactions in combination with mass spectrometry (MS) for sequence confirmation of antisense phosphorothioate oligodeoxynucleotides is described. In this procedure, synthetic phosphorothioate oligodeoxynucleotides are used as reverse primers for extension of matched templates with enough length (approximately 150-300 bp) for well-established Sanger sequencing. Because the complementary strand of modified primer is used directly for sequencing primer extension, the base order shown in the sequencing result is reversely complementary to phosphorothioate oligodeoxynucleotide. This sequencing method can be applied not only to phosphorothioate oligodeoxynucleotides with different lengths (13-21 mer) and base composition but also to sequences with bases' switch, deletion, or insertion. In addition, modified primers incorporate the 5' end of polymerase chain reaction (PCR) products conveying the characters of phosphorothioate modification. The method requires only common reagents and instruments and so is better suited to routine sequence analysis in quality control of phosphorothioate antisense drugs.  相似文献   

16.
M13 RF IV DNA where phosphorothioate groups are incorporated at restriction endonuclease Nci I recognition sites in the (-)strand is efficiently nicked by the action of this enzyme. Incubation of such nicked DNA with exonuclease III produces gapped DNA. The gap can be filled by reaction with deoxynucleoside triphosphates and DNA polymerase I. When this sequence of reactions is performed with DNA containing a mismatch oligonucleotide primer in the (-)-strand mutational frequencies of 70-90% can be obtained upon transformation. The general nature of this methodology has been further shown to be applicable to other restriction enzymes such as Hind II, Pst I and Fsp I. The mutational frequency obtained using these enzymes is between 40-80% mainly because of less efficient nicking and gapping. Studies on inhibition of Nci I cleavage show that in addition to a phosphorothioate group at the position of cleavage an additional group in the 5'-neighbouring position is necessary for complete inhibition.  相似文献   

17.
Various O,O-dialkyl O-cyanophenyl phosphates and phosphorothioates were prepared and their biological activities were examined. Among them, O,O-dimethyl O- (4-chloro-2-cyanophenyl) phosphorothioate was found to have selective and high toxicity to houseflies. O,O-Dimethyl O- (4-cyanophenyl) phosphorothioate, O,O-diethyl O- (4-cyanophenyl) phosphorothioate and O,O-diethyl O- (2-chloro-4-cyanophenyl) phosphorothioate showed high insecticidal activty to American cockroaches, though the former two were not so effective to houseflies. The dimethyl esters of these series exhibited markedly lowered mammalian toxicity. Among the O-ethyl O-cyanophenyl phenylphosphonothioates, O-ethyl O- (2-chloro-4-cyanophenyl) phenylphosphonothioate was highly effective to mites, while less effective to insects.  相似文献   

18.
The nucleotide preferences of calf thymus topoisomerases I and II for recognition of supercoiled DNA have been assessed by the relaxation and cleavage of DNA containing base-specific phosphorothioate substitutions in one strand. The type I enzyme is inhibited to varying degrees by all modified DNAs, but most effectively (by approximately 60%) if deoxyguanosine 5'-O-(1-thiomonophosphate) (dGMP alpha S) is incorporated into negatively supercoiled DNA. A DNA in which all internucleotide linkages of one strand are phosphorothionate is relaxed, most probably via the unsubstituted strand. The type II enzyme is inhibited when deoxyadenosine 5'-O-(1-thiomonophosphate) (dAMP alpha S) or deoxyribosylthymine 5'-O-(1-thiomonophosphate) is incorporated into the DNA substrate, and the course of the relaxation reaction changes from a distributive mode to a predominantly processive mode. A fully substituted DNA is very poorly relaxed by the type II enzyme, illustrating the strict commitment of the enzyme to relaxation via double-strand cleavage. The sense of supercoiling does not affect the inhibition profile of either enzyme. DNA strand breaks introduced by type II topoisomerase in a normal control DNA or deoxycytidine 5'-O-(1-thiomonophosphate)-substituted DNA on treatment with sodium dodecyl sulfate at low ionic strength are prevented by pretreatment with 0.2 M NaCl. In contrast, breaks in DNA having either dAMP alpha S or all four phosphorothioate nucleotides incorporated in one strand are prevented only with higher NaCl concentrations. Thus indicating activity at the phosphorothioate linkage 5' to dA but not 5' to dC. We conclude that topoisomerase II activity occurs preferentially at sites possessing dAMP or dTMP, and that dGMP is involved in DNA recognition by topoisomerase I.  相似文献   

19.
Three Stenotrophomonas maltophilia isolates, KKWT11, CBF10-1, TTF10, were collected from organophosphate (OP)-contaminated soil in the Houston metropolitan area. A conserved metallo-β-lactamase (MBL) enzyme purported to function as a methyl parathion hydrolase was identified and found to be distantly homologous to the characterized Pseudomonas sp. WBC-3 methyl parathion hydrolase and shared no significant homology with other organophosphate hydrolases. Following expression of MBL enzymes cloned from S. maltophilia strains KKWT11, CBF10-1, and TTF10, respectively, an enzymatic preference for paraoxon was observed, with concentrations of 70, 40, and 30 µM of p-nitrophenol (PNP) formed after 48 h. Comparatively limited hydrolysis against the phosphorothioate methyl parathion was recorded with concentrations of PNP ranging from 9.5 to 3.5 µM after 48 h. A coexpressive construct harboring a modified organophosphorus hydrolase enzyme and the CBF10-1 MBL enzyme yielded only a slight improvement in degradation of methyl parathion, resulting in 75 µM of PNP formed compared with 69 µM formed by the organophosphorus hydrolase (OPH) control over 48 h. These results suggest that S. maltophilia MBL enzymes are currently insufficient for broad-spectrum hydrolysis of phosphorothioate insecticides. Future studies will thus seek to elucidate their catalytic efficiency against other notable phosphotriester oxons, including chlorpyrifos oxon, and malaoxon.  相似文献   

20.
We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号