首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constructs based on the pSUPER vector [Science 296 (2002) 550] and encoding small interfering RNAs specific for the Type I, Type II, or Type III isozymes of mammalian (rat) hexokinase were prepared. Transfection of Chinese hamster ovary and HeLa cells with these vectors resulted in selective depletion of the respective isozymes. A Zeocin marker was incorporated into the modified pSUPER vector, permitting isolation of stably transfected cell lines selectively depleted of the respective isozyme.  相似文献   

2.
3.
Variants of rhodopsin, a complex of 11-cis retinal and opsin, cause retinitis pigmentosa (RP), a degenerative disease of the retina. Trafficking defects due to rhodopsin misfolding have been proposed as the most likely basis of the disease, but other potentially overlapping mechanisms may also apply. Pharmacological therapies for RP must target the major disease mechanism and contend with overlap, if it occurs. To this end, we have explored the molecular basis of rhodopsin RP in the context of pharmacological rescue with 11-cis retinal. Stable inducible cell lines were constructed to express wild-type opsin; the pathogenic variants T4R, T17M, P23A, P23H, P23L, and C110Y; or the nonpathogenic variants F220L and A299S. Pharmacological rescue was measured as the fold increase in rhodopsin or opsin levels upon addition of 11-cis retinal during opsin expression. Only Pro23 and T17M variants were rescued significantly. C110Y opsin was produced at low levels and did not yield rhodopsin, whereas the T4R, F220L, and A299S proteins reached near-wild-type levels and changed little with 11-cis retinal. All of the mutant rhodopsins exhibited misfolding, which increased over a broad range in the order F220L, A299S, T4R, T17M, P23A, P23H, P23L, as determined by decreased thermal stability in the dark and increased hydroxylamine sensitivity. Pharmacological rescue increased as misfolding decreased, but was limited for the least misfolded variants. Significantly, pathogenic variants also showed abnormal photobleaching behavior, including an increased ratio of metarhodopsin-I-like species to metarhodopsin-II-like species and aberrant photoproduct accumulation with prolonged illumination. These results, combined with an analysis of published biochemical and clinical studies, suggest that many rhodopsin variants cause disease by affecting both biosynthesis and photoactivity. We conclude that pharmacological rescue is promising as a broadly effective therapy for rhodopsin RP, particularly if implemented in a way that minimizes the photoactivity of the mutant proteins.  相似文献   

4.
5.
Inherited retinal dystrophies are Mendelian neurodegenerative conditions classified as pigmentary retinopathies, macular dystrophies and others. Over a 21-year period, from 1990 to 2011, we have screened in Montpellier 107 genes in 609 families and have identified a causal mutation in 68.5% of them. Following a gene candidate approach, we established that RPE65, the isomerohydrolase of the visual cycle, is responsible for severe childhood blindness (Leber congenital amaurosis or early onset retinal dystrophy). In an ongoing study, we screened the genes in a series of 283 families with dominant retinitis pigmentosa and we have estimated that 80% of the families have a mutation in a known gene. A similar study is currently undergoing for autosomal recessive retinitis pigmentosa. Finally, we have identified IMPG1 as a responsible gene for rare cases of macular vitelliform dystrophy with a dominant or recessive inheritance.  相似文献   

6.
为寻找视网膜色素变性的致病基因,从120个家系收集视网膜色素变性先证者,制备基因组DNA。应用PCR―异源双链-SSCP法,分析GUCA1B基因4个外显子、GNGT1基因编码区和RGS9基因视网膜特异性转录区,寻找基因变异。序列分析确定突变。结果表明,31人的GUCA1B基因外显子1存在T/C多态。所有先证者中均未检测到GUCA1B、GNGT1和RGS9基因突变。认为本组病例未发现GUCA1B、GNGT1和RGS9基因的突变。 Abstract:To screen possible disease-causing mutations in the GUCA1B gene,GNGT1 gene,and the alternative-splicing region of RGS9 gene in 120 probands with retinitis pigmentosa,genomic DNA was collected from 120 probands with retinitis pigmentosa out of 120 families.The coding sequences of the GUCA1B and GNGT1 genes and the alternative splicing region of the RGS9 gene were analyzed by using PCR-heteroduplex-SSCP method.Mutation was confirmed by DNA sequencing.A T/C polymorphism was identified in exon 1 of the GUCA1B gene in 31 of the 120 probands.Heteroduplex-SSCP analysis of the GUCA1B and GNGT1 coding regions and RGS9 alternative splicing region showed no mutations in 120 patients with retinitis pigmentosa.We found no evidence that mutation in GUCA1B,GNGT1,or RGS9 gene is a cause of retinitis pigmentosa.  相似文献   

7.
Leber congenital amaurosis 9 (LCA9) is an autosomal recessive retinal degeneration condition caused by mutations in the NAD+ biosynthetic enzyme NMNAT1. This condition leads to early blindness but no other consistent deficits have been reported in patients with NMNAT1 mutations despite its central role in metabolism and ubiquitous expression. To study how these mutations affect NMNAT1 function and ultimately lead to the retinal degeneration phenotype, we performed detailed analysis of LCA-associated NMNAT1 mutants, including the expression, nuclear localization, enzymatic activity, secondary structure, oligomerization, and promotion of axonal and cellular integrity in response to injury. In many assays, most mutants produced results similar to wild type NMNAT1. Indeed, NAD+ synthetic activity is unlikely to be a primary mechanism underlying retinal degeneration as most LCA-associated NMNAT1 mutants had normal enzymatic activity. In contrast, the secondary structure of many NMNAT1 mutants was relatively less stable as they lost enzymatic activity after heat shock, whereas wild type NMNAT1 retains significant activity after this stress. These results suggest that LCA-associated NMNAT1 mutants are more vulnerable to stressful conditions that lead to protein unfolding, a potential contributor to the retinal degeneration observed in this syndrome.  相似文献   

8.
9.
《Current biology : CB》2022,32(20):4538-4546.e5
  1. Download : Download high-res image (244KB)
  2. Download : Download full-size image
  相似文献   

10.
RPE65 is the isomerohydrolase essential for regeneration of 11-cis retinal, the chromophore of visual pigments. Here we compared the impacts of two mutations in RPE65, E417Q identified in patients with Leber congenital amaurosis (LCA), and E417D on isomerohydrolase activity. Although both mutations decreased the stability of RPE65 and altered its sub-cellular localization, E417Q abolished isomerohydrolase activity whereas the E417D mutant retained partial enzymatic activity suggesting that the negative charge of E417 is important for RPE65 catalytic activity. Loss of charge at this position may represent a mechanism by which the E417Q mutation causes blindness in LCA patients.  相似文献   

11.
Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell growth factors (VEGF), have been used to prevent the neovascularization that accompanies AMD and DR resulting in the amelioration of vision in a significant number of patients. In animal models it has been shown that transfection of RPE cells with the gene for PEDF and other growth factors can prevent or slow degeneration. A limited number of studies in humans have also shown that transfection of RPE cells in vivo with the gene for PEDF is effective in preventing degeneration and restore vision. Most of these studies have used virally mediated gene delivery with all its accompanying side effects and have not been widely used. New techniques using non-viral protocols that allow efficient delivery and permanent integration of the transgene into the host cell genome offer novel opportunities for effective treatment of retinal degenerations.  相似文献   

12.
Leber congenital amaurosis (LCA) is a heterogeneous, early‐onset inherited retinal dystrophy, which is associated with severe visual impairment. We aimed to determine the disease‐causing variants in Iranian LCA and evaluate the clinical implications. Clinically, a possible LCA disease was found through diagnostic imaging, such as fundus photography, autofluorescence and optical coherence tomography. All affected patients showed typical eye symptoms associated with LCA including narrow arterioles, blindness, pigmentary changes and nystagmus. Target exome sequencing was performed to analyse the proband DNA. A homozygous novel c. 2889delT  (p.P963 fs) mutation in the RPGRIP1 gene was identified, which was likely the deleterious and pathogenic mutation in the proband. Structurally, this mutation lost a retinitis pigmentosa GTPase regulator (RPGR)‐interacting domain at the C‐terminus which most likely impaired stability in the RPGRIP1 with the distribution of polarised proteins in the cilium connecting process. Sanger sequencing showed complete co‐segregation  in this pedigree. This study provides compelling evidence that the c. 2889delT  (p.P963 fs) mutation in the RPGRIP1 gene works as a pathogenic mutation that contributes to the progression of LCA.  相似文献   

13.
14.
Mutations in the human Crumbs homologue 1 (CRB1) gene cause severe retinal dystrophies. CRB1 is homologous to Drosophila Crumbs, a protein essential for establishing and maintaining epithelial polarity. We have isolated the mouse orthologue, Crb1, and analyzed its expression pattern in embryonic and post-natal stages. Crb1 is expressed exclusively in the eye, and the central nervous system. In the developing eye, expression of Crb1 is detected in the retinal progenitors, and later on becomes restricted to the differentiated photoreceptor cells where it remains active up to the adult stage. In the developing neural tube, expression of Crb1 is restricted to its most ventral structures, coinciding with the expression domain of Nkx2.2. In the adult brain, Crb1 expression is defined to areas where the production and migration of neurons occurs in adulthood.  相似文献   

15.

Objective

The purpose of this study was to determine the molecular basis of retinitis pigmentosa (RP) in a 4 affected sib-family segregating this retinal phenotype.

Methods

Affected sibs underwent complete ophthalmologic examination including funduscopic inspection, electroretinogram, fluorescein angiography, visual field measurement, and optical coherence tomography. Both parents were deceased after their sixties and were reported with no visual handicap. Molecular analysis included direct nucleotide sequencing of the rhodopsin gene (RHO), at chromosome 3q21–q24, in DNA from a total of 4 affected sibs. A total of 200 ethnically matched alleles were included as mutation controls.

Results

Sector RP was clinically documented in this family. Wide phenotypic variability was observed with visual acuities ranging from 20/20 to 20/200 and variable funduscopic appearance. Molecular analysis disclosed a c.233A>T mutation at RHO exon 1, predicting a missense p.N78I substitution.

Conclusions

Even though RP can be caused by mutations in a variety of genes, the RHO gene was chosen to be investigated in this RP family since it has been previously associated to sector disease. This case exemplifies the value of guiding RP molecular analysis based on funduscopic features.  相似文献   

16.

Objective

Retinitis pigmentosa (RP) is the most prevalent type of inherited retinal degeneration and one of the commonest causes of genetically determined visual dysfunction worldwide. To date, approximately 35 genes have been associated with nonsyndromic autosomal recessive RP (arRP), however the small contribution of each gene to the total prevalence of arRP and the lack of a clear genotype–phenotype correlation complicate the genetic analysis in affected patients. Next generation sequencing technologies are powerful and cost-effective methods for detecting causative mutations in both sporadic and familial RP cases.

Methods

A Mexican family with 5 members affected from arRP was studied. All patients underwent a complete ophthalmologic examination. Molecular methods included genome-wide SNP homozygosity mapping, exome sequencing analysis, and Sanger-sequencing confirmation of causal mutations.

Results

No regions of shared homozygosity among affected subjects were identified. Exome sequencing in a single patient allowed the detection of two missense mutations in the RDH12 gene: a c.446T>C transition predicting a novel p.L149P substitution, and a c.295C>A transversion predicting a previously reported p.L99I replacement. Sanger sequencing confirmed that all affected subjects carried both RDH12 mutations.

Conclusions

This study adds to the molecular spectrum of RDH12-related retinopathy and offers an additional example of the power of exome sequencing in the diagnosis of recessively inherited retinal degenerations.  相似文献   

17.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   

18.
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.  相似文献   

19.
20.
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号