首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
The deoxyribonucleoside triphosphate (dNTP) pools that support the replication of mitochondrial DNA are physically separated from the rest of the cell by the double membrane of the mitochondria. Perturbed homeostasis of mitochondrial dNTP pools is associated with a set of severe diseases collectively termed mitochondrial DNA depletion syndromes. The degree of interaction of the mitochondrial dNTP pools with the corresponding dNTP pools in the cytoplasm is currently not clear. We reviewed the literature on previously reported simultaneous measurements of mitochondrial and cytoplasmic deoxyribonucleoside triphosphate pools to investigate and quantify the extent of the influence of the cytoplasmic nucleotide metabolism on mitochondrial dNTP pools. We converted the reported measurements to concentrations creating a catalog of paired mitochondrial and cytoplasmic dNTP concentration measurements. Over experiments from multiple laboratories, dNTP concentrations in the mitochondria are highly correlated with dNTP concentrations in the cytoplasm in normal cells in culture (Pearson R = 0.79, p = 3 × 10?7) but not in transformed cells. For dTTP and dATP there was a strong linear relationship between the cytoplasmic and mitochondrial concentrations in normal cells. From this linear model we hypothesize that the salvage pathway within the mitochondrion is only capable of forming a concentration of approximately 2 μM of dTTP and dATP, and that higher concentrations require transport of deoxyribonucleotides from the cytoplasm.  相似文献   

2.
Two dimensional thin-layer chromatography on anion-exchange cellulose enables the separation of the normally occurring ribo- and deoxyribonucleoside triphosphates. This technique was applied to perchloric acid extracts of callus tissue of sycamore and tobacco and of pine pollen grown in 32P-orthophosphate labelled media to quantitate the nucleoside triphosphate pools under different growth conditions. The results showed that the ratio of the deoxyribonucleo-side triphosphates to their corresponding ribonucleoside triphosphates is low in plant cells, similar to the ratio previously found for animal cells. During the period of most rapid DNA synthesis in the callus tissue, the deoxyribonucleoside triphosphate pools reach their highest values. This effect is also demonstrated with cells of Escbericbia coli.  相似文献   

3.
The complete nucleotide sequence (501,020 bp) of the mitochondrial genome from cytoplasmic male-sterile (CMS) sugar beet was determined. This enabled us to compare the sequence with that previously published for the mitochondrial genome of normal, male-fertile sugar beet. The comparison revealed that the two genomes have the same complement of genes of known function. The rRNA and tRNA genes encoded in the CMS mitochondrial genome share 100% sequence identity with their respective counterparts in the normal genome. We found a total of 24 single nucleotide substitutions in 11 protein genes encoded by the CMS mitochondrial genome. However, none of these seems to be responsible for male sterility. In addition, several other ORFs were found to be actively transcribed in sugar beet mitochondria. Among these, Norf246 was observed to be present in the normal mitochondrial genome but absent from the CMS genome. However, it seems unlikely that the loss of Norf246 is causally related to the expression of CMS, because previous studies on mitochondrial translation products failed to detect the product of this ORF. Conversely, the CMS genome contains four transcribed ORFs (Satp6presequence, Scox2-2 , Sorf324 and Sorf119) which are missing from the normal genome. These ORFs, which are potential candidates for CMS genes, were shown to be generated by mitochondrial genome rearrangements.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. Hagemann  相似文献   

4.
Ribonucleotide reductases (RNRs) are required for the synthesis of deoxyribonucleoside triphosphates (dNTPs) from ribonucleotides. In Escherichia coli, regulation of RNR expression is co‐ordinated with the cell cycle, and involves several regulatory proteins. One of these, NrdR, has recently been shown to regulate all three nrd operons that encode RNR isoenzymes. Repression by NrdR is believed to be stimulated by elevated dNTPs, although there is no direct evidence for this model. Here, we sought to elucidate the mechanism by which NrdR regulates nrd expression according to the abundance of (d)NTPs. We determined that ATP and dATP bind to NrdR in a negatively cooperative fashion, such that neither can fully occupy the protein. Both nucleotides also appear to act as positive heterotropic effectors, since the binding of one stimulates binding of the other. Nucleotide binding stimulates self‐association of NrdR, with tri‐ and diphosphates stimulating oligomerization more effectively than monophosphates. As‐prepared NrdR contains (deoxy)nucleoside monophosphates, diphosphates and triphosphates, and its DNA binding activity is inhibited by triphosphates and diphosphates but not by monophosphates. We propose a model in which NrdR selectively binds (deoxy)nucleoside triphosphates, which are hydrolysed to their monophosphate counterparts in order to regulate DNA binding.  相似文献   

5.
Retrograde regulation of nuclear gene expression in CW-CMS of rice   总被引:1,自引:0,他引:1  
The CW-cytoplasmic male sterility (CMS) line has the cytoplasm of Oryza rufipogon Griff, and mature pollen is morphologically normal under an optical microscope but lacks the ability to germinate; restorer gene Rf17 has been identified as restoring this ability. The difference between nuclear gene expression in mature anthers was compared for the CW-CMS line, [cms-CW] rf17rf17, and a maintainer line with normal cytoplasm of Oryza sativa L., [normal] rf17rf17. Using a 22-k rice oligoarray we detected 58 genes that were up-regulated more than threefold in the CW-CMS line. Expression in other organs was further investigated for 20 genes using RT-PCR. Five genes, including genes for alternative oxidase, were found to be preferentially expressed in [cms-CW] rf17rf17 but not in [normal] rf17rf17 or [cms-CW] Rf17Rf17. Such [cms-CW] rf17rf17-specific gene expression was only observed in mature anthers but not in leaves, stems, or roots, indicating the presence of anther-specific mitochondrial retrograde regulation of nuclear gene expression, and that Rf17 has a role in restoring the ectopic gene expression. We also used a proteomic approach to discover the retrograde regulated proteins and identified six proteins that were accumulated differently. These results reveal organ-specific induced mitochondrial retrograde pathways affecting nuclear gene expression possibly related to CMS. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

6.
An imprinting disorder has been believed to underlie the etiology of familial biparental hydatidiform moles (HMs) based on the abnormal methylation or expression of imprinted genes in molar tissues. However, the extent of the epigenetic defect in these tissues and the developmental stage at which the disorder begins have been poorly defined. In this study, we assessed the extent of abnormal DNA methylation in two HMs caused by mutations in the recently identified 19q13.4 gene, NALP7. We demonstrate normal postzygotic DNA methylation patterns at major repetitive and long interspersed nuclear elements (LINEs), genes on the inactive X-chromosome, three-cancer related genes, and CpG rich regions surrounding the PEG3 differentially methylated region (DMR). Our data provide a comprehensive assessment of DNA methylation in familial molar tissues and indicate that abnormal DNA methylation in these tissues is restricted to imprinted DMRs. The known role of NALP7 in apoptosis and inflammation pinpoints previously unrecognized pathways that could directly or indirectly underlie the abnormal methylation of imprinted genes in molar tissues.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

7.
DNA repair synthesis was studied in germinating spores of Bacillus subtilis made permeable to deoxyribonucleoside triphosphates by treatment with Brij 58. The synthesis is dependent on the presence of all four deoxyribonucleoside triphosphates, but does not require adenosine triphosphate. Repair synthesis in the γ-ray irradiated and Brij 58 treated germinating spores was observed in wild type strain 168Tt, but not in DNA polymerase I-deficient mutant strain D22. Furthermore, the single-strand breaks of DNA in the germinating spores of strain 168Tt induced by γ -ray irradiation were rejoined during postirradiation incubation in the presence of four deoxyribonucleoside triphosphates, nicotinamide adenine dinucleotide and magnesium ion. In the case of a mutant D22, the γ-ray induced DNA single-strand breaks were not rejoined.  相似文献   

8.
A latent RNAase activity stimulated by nucleoside triphosphates has been isolated from a yeast chromatin extract, by filtration on Sepharose 6B and hydroxyapatite chromatography. The RNAase was separated from a thermolabile proteic inhibitor on phosphocellulose. When separated from the inhibitor, the RNAase hydrolyses RNA to 5′-mononucleotides. Its activity is retained in the presence of EDTA, and 50% inhibited by 1 mM ATP or CTP. The RNAase is inhibited by the thermolabile component only in the presence of divalent cations. The activity is recovered upon addition of 0.01 mM ATP to the mixture. The Km for ATP is 10 μM. ATP can be replaced by other ribo- or deoxyribonucleoside triphosphates with varying efficiency but not by ADP, AMP or cAMP. These results suggest multiple interactions between the RNAase, a regulatory component, divalent cations and nucleoside triphosphates.  相似文献   

9.
Intracellular pool levels of ribo- and deoxyribonucleoside triphosphates were monitored throughout the cell cycle of C3H10T1/2 mouse embryo fibrolast cells synchronized by isoleucine deprivation. Absolute pool sizes of ribonucleoside triphosphates were approximately 30 fold greater than those of the corresponding deoxyribonucleoside triphosphates. Of the ribonucleoside triphosphates, pool sizes of ATP exhibited the greatest change, increasing from a low of 32.7 nmol/107 cells during G1 to a high of 81.6 nmol/107 cells 2 h prior to mid S-phase. Levels of ATP subsequently declined to 40.2 nmol/107 cells during late S-phase, followed by a second peak of 65.8 nmol/107 with the onset of cell division. No significant changes in the pool sizes of UTP and GTP were found throughout the cell cycle. Of the deoxyribonucleoside triphosphates, pool sizes of pyrimidine deoxyribonucleoside triphosphates were approx. 5–10 fold greater than those of purine deoxyribonucleoside triphosphates. Low levels of deoxyribonucleoside triphosphates during G1 (0.3–1.3 pmol/107 cells) increased coordinately with the initiation of DNA synthesis to an initial peak during mid S-phase (0.5–6.4 pmol/107 cells). Decling levels of deoxyribonucleoside triphosphates during late S-phase were followed by a subsequent larger second peak (1.7–10.7 pmol/107 cells) during G2-M.  相似文献   

10.

Two novel C-linked oxadiazole carboxamide nucleosides 5-(2′-deoxy-3′,5′-β-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-5-carboxamide (1) and 5-(2′-deoxy-3′,5′-β-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-3-carboxamide (2) were successfully synthesized and characterized by X-ray crystallography. The crystallographic analysis shows that both unnatural nucleoside analogs 1 and 2 adapt the C2′-endo (“south”) conformation. The orientation of the oxadiazole carboxamide nucleobase moiety was determined as anti (conformer A) and high anti (conformer B) in the case of the nucleoside analog 1 whereas the syn conformation is adapted by the unnatural nucleoside 2. Furthermore, nucleoside analogs 1 and 2 were converted with high efficiency to corresponding nucleoside triphosphates through the combination chemo-enzymatic approach. Oxadiazole carboxamide deoxyribonucleoside analogs represent valuable tools to study DNA polymerase recognition, fidelity of nucleotide incorporation, and extension.

  相似文献   

11.
Adenosine triphosphatase activity, present in extracts of isolatedphloem and xylem tissues of Heracleum mantegazzianum and thepetioles of Helianthus annuus, has been fractionated on 7 percent polyacrylamide gels into electrophoretically distinct enzymeswith different properties. Extracts of whole petioles containfour enzymes capable of hydrolysing ATP, phloem extracts possesstwo, and xylem, one. Enzyme I, common to all the extracts, showspreferential hydrolysis of nucleoside triphosphates and is stimulatedby monovalent cations. Enzyme II, of phloem and of petiole extracts,is a general phosphatase. Enzymes III and IV, of petiole extracts,are specific for nucleoside triphosphates but are unaffectedby monovalent cations. All four enzymes are markedly inhibitedby Mg2+. None of the enzymes is affected by ouabain or oligomycin.  相似文献   

12.
The deoxyribonucleoside triphosphate (dNTP) pools that support the replication of mitochondrial DNA are physically separated from the rest of the cell by the double membrane of the mitochondria. Perturbed homeostasis of mitochondrial dNTP pools is associated with a set of severe diseases collectively termed mitochondrial DNA depletion syndromes. The degree of interaction of the mitochondrial dNTP pools with the corresponding dNTP pools in the cytoplasm is currently not clear. We reviewed the literature on previously reported simultaneous measurements of mitochondrial and cytoplasmic deoxyribonucleoside triphosphate pools to investigate and quantify the extent of the influence of the cytoplasmic nucleotide metabolism on mitochondrial dNTP pools. We converted the reported measurements to concentrations creating a catalog of paired mitochondrial and cytoplasmic dNTP concentration measurements. Over experiments from multiple laboratories, dNTP concentrations in the mitochondria are highly correlated with dNTP concentrations in the cytoplasm in normal cells in culture (Pearson R = 0.79, p = 3 × 10(-7)) but not in transformed cells. For dTTP and dATP there was a strong linear relationship between the cytoplasmic and mitochondrial concentrations in normal cells. From this linear model we hypothesize that the salvage pathway within the mitochondrion is only capable of forming a concentration of approximately 2 μM of dTTP and dATP, and that higher concentrations require transport of deoxyribonucleotides from the cytoplasm.  相似文献   

13.
A simple, rapid, and inexpensive method is described for the synthesis of γ-32P-labeled ribo- or deoxyribonucleoside triphosphates. The procedure involves chemical synthesis of [32P]acetylphosphate and subsequent phosphorylation of nucleoside diphosphates using acetate kinase (EC 2.7.2.1) and a final purification step. The entire procedure is performed 8 h or less.  相似文献   

14.
Regulation of ribonucleotide reductase activity in mammalian cells   总被引:1,自引:0,他引:1  
Mammalian ribonucleotide reductase catalyzes the rate-limiting for the de novo synthesis 2'-deoxyribonucleoside 5'-triphosphates. There is some suggestion that this step may also be the rate-limiting step of DNA synthesis. It is apparent that the level of the enzyme, ribonucleotide reductase, varies through the cell cycle and is highest in those tissues with the greatest proliferation rate. This increase in activity is associated with increased protein synthesis. The purified enzyme has been shown to be subject to strict allosteric regulation by the various nucleoside triphosphates and it has been proposed that allosteric regulation plays an important role in the level of ribonucleotide reductase activity which is expressed. All experimental data relating to this point, however, do not support the role of deoxyribonucleoside triphosphates as a major factor in determining cellular reductase activity during normal cell division. Several naturally occurring factors have been isolated from cells which lower ribonucleotide reductase activity in vitro. These factors have been found in tissues of low growth fraction and appear to be absent or low in tissues or high growth fraction such as tumor, regenerating liver and embryonic tissues. The expression of intracellular ribonucleotide reductase activity is therefore controlled at various levels and by various factors and the prevailing mode of regulation may vary throughout the cell cycle transverse and also in the various types of cells.  相似文献   

15.
The 31P NMR phosphatic profile of the sponge Eunapius fragilis differs considerably from profiles obtained from vertebrate tissues: phosphonic acids, glycan phosphates, and phosphoarginine are present in the sponge profile. Ethanolamine phosphate, a family of phosphodiesters, dinucleotides, and a family of pyrimidine-nucleotide-activated co-factors are elevated, while nucleoside monophosphates, inorganic orthophosphate, and nucleoside triphosphates are diminished with respect to vertebrate tissues. The profile contains 26 different phosphatic metabolite resonance bands, and all but one of these (phosphonates) can be used to differentiate among three southern Lake Michigan sponge habitats examined: a coastal lagoon; the shipwreck of the Material Service Barge in the open waters of Lake Michigan; and an industrial section of the Calumet River. The quantitative phosphatic metabolite concentration data, in conjunction with numerical indexes derived therefrom, demonstrate that, in analogy to sponge phospholipid profiling, 31P NMR phosphatic metabolites can be utilized to distinguish among habitats using a single species as a bioindicator. For the sponge, energy reserves are concentrated in nucleotide co-factors rather than nucleoside triphosphates. High concentrations of ethanolamine and choline phosphate intermediates are present suggesting that metabolic pathways leading to phospholipid biosynthesis are primed for rapid membrane biosynthesis leading to subsequent sponge growth.  相似文献   

16.
In our previous study, we bred a stable cytoplasmic male sterility (CMS) line of tuber mustard by using distant hybridization and subsequent backcrosses. In this CMS plants, all floral organs are normal except the anthers, which are transformed into petals or tubular structures. Recently, 2 mitochondrial genes—atpA and orf220—that are distinctively present in the CMS line of tuber mustard were cloned and partially characterized. In our study of genetic diversity analysis of CMS, 7 species of Brassica and Raphanus crops, which included 5 CMS lines and their respective maintainer lines, were used to compare the constitution of protein-coding genes in the mitochondrial genomes. In 4 of the 43 mitochondrial genes, namely, atpA, orf220, orf256, and orf305/orf324, polymorphisms were detected among the tuber mustard CMS line and its maintainer line. The results of a cluster analysis indicate that petaloid CMS phenotype of tuber mustard is a novel CMS type and is nearer to the nap CMS in Brassica napus at the phylogenetic level. The results of individual amplifications of these genes indicate the presence of 4 sequence-characterized amplified region (SCAR) markers, which enable rapid and reliable identification of this CMS. Expressions of the orf220 and orf256 genes were detected only in the CMS line, while expression of the orf305 gene was detected in the maintainer line. The different expression patterns of different mitochondrial-specific marker genes indicate that the quantity of mitochondrial proteins is differentially regulated during organ/tissue development in tuber mustard. The results of this study suggest that the above mentioned 4 mitochondrial genes are associated with the petaloid CMS phenotype in tuber mustard.  相似文献   

17.
31P nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. The in vivo NMR method allows biological systems to be studied non-invasively and non-destructively. 31P NMR experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent chemical shifts of the signals arising from the inorganic P (Pi) located in the two compartments. Similarly, the resonances arising from α, β and γ phosphates of nucleoside triphosphates (NTP) and nucleoside diphosphates (NDP) supply knowledge about the metabolic activity and the energetic status of the tissue. In addition, the kinetic behaviour of P uptake and storage can be determined with this method. The 31P NMR spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the Pi taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed only a small signal from the cytoplasmic Pi, suggesting a low cytoplasmic volume in this AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
An extract from the apical portion of etiolated seedlings of Pisum sativum L. was used as a test system to examine the action of ethylene on DNA polymerase activity. The extract catalyzed the polymerization of labeled deoxyribonucleoside triphosphates into a trichloroacetic acid-insoluble product. The system required Mg2+, nicked DNA, and all four deoxyribonucleoside triphosphates for maximum activity. Extracts from plants previously treated with ethylene showed less activity to synthesize DNA than extracts from nontreated plants. Loss of extractable DNA polymerase activity may be due to accumulation of a non-competitive inhibitor in the ethylene-treated plants. Treating the extract with ethylene did not affect the polymerase activity. Inhibition of cell division by ethylene observed in this and other tissues may be the result of accumulation of an inhibitor of DNA polymerase.  相似文献   

19.
20.
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号