首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

2.
ABSTRACT

The Roma represents a transnational ethnic group, with a current European population of 8–10 million. The evolutionary process that had the greatest impact on the gene pool of the Roma population is called the founder effect. Renal hypouricemia (RHUC) is a rare heterogenous inherited disorder characterized by impaired renal urate reabsorption. The affected individuals are predisposed to recurrent episodes of exercise-induced nonmyoglobinuric acute kidney injury and nephrolithiasis. To date, more than 150 patients with a loss-of-function mutation for the SLC22A12 (URAT1) gene have been found, most of whom are Asians. However, RHUC 1 patients have been described in a variety of ethnic groups (e.g., Arab Israelis, Iraqi Jews, Caucasians, and Roma) and in geographically noncontiguous countries. This study confirms our previous findings regarding the high frequency of SLC22A12 variants observed. Frequencies of the c.1245_1253del and c.1400C>T variants were found to be 1.92% and 5.56%, respectively, in a subgroup of the Roma population from five regions in three countries: Slovakia, Czech Republic, and Spain. Our findings suggested that the common dysfunction allelic variants of URAT1 exist in the general Roma population and thus renal hypouricemia should be kept in differential diagnostic algorithm on Roma patients with defect in renal tubular urate transport. This leads to confirm that the genetic drift in the Roma have increased the prevalence of hereditary disorders caused by very rare variants in major population.  相似文献   

3.
Primary renal hypouricemia is a genetic disorder characterized by defective renal uric acid (UA) reabsorption with complications such as nephrolithiasis and exercise-induced acute renal failure. The known causes are: defects in the SLC22A12 gene, encoding the human urate transporter 1 (hURAT1), and also impairment of voltage urate transporter (URATv1), encoded by SLC2A9 (GLUT9) gene. Diagnosis is based on hypouricemia (<119 μmol/L) and increased fractional excretion of UA (>10%). To date, the cases with mutations in hURAT1 gene have been reported in East Asia only. More than 100 Japanese patients have been described. Hypouricemia is sometimes overlooked; therefore, we have set up the flowchart for this disorder. The patients were selected for molecular analysis from 620 Czech hypouricemic patients. Secondary causes of hyperuricosuric hypouricemia were excluded. The estimations of (1) serum UA, (2) excretion fraction of UA, and (3) analysis of hURAT1 and URATv1 genes follow. Three transitions and one deletion (four times) in SLC22A12 gene and one nucleotide insertion in SLC2A9 gene in seven Czech patients were found. Three patients had acute renal failure and urate nephrolithiasis. In addition, five nonsynonymous sequence variants and three nonsynonymous sequence variants in SLC2A9 gene were found in two UK patients suffering from acute renal failure. Our finding of the defects in SLC22A12 and SLC2A9 genes gives further evidence of the causative genes of primary renal hypouricemia and supports their important role in regulation of serum urate levels in humans.  相似文献   

4.
5.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

6.
目的:探讨可溶性载体2家族成员9基因(SLC2A9)rs1014290位点的单核苷酸多态性与北方汉族地区男性原发性痛风的发病的相关性。方法:选取404例原发性痛风男性患者和412名健康体检者,分别检测其血清尿酸、血脂、肾功等生化指标,同时提取外周血DNA,应用连接酶检测反应(LDR)法分析其SLC2A9基因rs1014290位点基因型和等位基因频率。结果:痛风组空腹血糖、尿酸(UA)、甘油三酯(TG)、胆固醇(TC)、收缩压、BMI、肌酐(Cr)水平均显著高于对照组,差异有统计学意义(P0.05)。痛风组SLC2A9基因rs1014290位点各基因型频率(CC:12.8%;CT:53.5%;TT:38.7%)与对照组(CC:16.2%;CT:50.9%;TT:32.9%)相比差异有统计学意义(X2=3.978,P=0.041);两组的等位基因频率相比差异无统计学意义(X2=0.314,P=0.496)。结论:SLC2A9基因rs1014290位点多态性可能与我国北方汉族男性原发性痛风的易感性相关,携带TT基因型的个体更易患痛风。  相似文献   

7.
Nuclear transport of the Saccharomyces cerevisiae membrane proteins Src1/Heh1 and Heh2 across the NPC is facilitated by a long intrinsically disordered linker between the nuclear localization signal (NLS) and the transmembrane domain. The import of reporter proteins derived from Heh2 is dependent on the FG‐Nups in the central channel, and the linker can position the transport factor‐bound NLS in the vicinity of the FG‐Nups in the central channel, while the transmembrane segment resides in the pore membrane. Here, we present a quantitative analysis of karyopherin‐mediated import and passive efflux of reporter proteins derived from Heh2, including data on the mobility of the reporter proteins in different membrane compartments. We show that membrane proteins with extralumenal domains up to 174 kDa, terminal to the linker and NLS, passively leak out of the nucleus via the NPC, albeit at a slow rate. We propose that also during passive efflux, the unfolded linker facilitates the passage of extralumenal domains through the central channel of the NPC .  相似文献   

8.
肌肉(骨骼肌)组织对脂肪酸的利用水平是影响机体能量稳态的关键因素.肌肉摄取的长链脂肪酸(long chain fatty acids,LCFAs)主要依赖细胞膜载体蛋白协助的跨膜转运过程.近年来,一系列与脂肪酸转运相关的膜蛋白被相继克隆鉴定,其中在肌肉中大量表达的有脂肪酸转运蛋白-1(fatty acid transport protein-1,FATP-1)、膜脂肪酸结合蛋白(plasma membrane fatty acid binding protein,FABPpm)、脂肪酸转位酶(fatty acid translocase,FAT/CD36)和小窝蛋白-1(caveolin-1).研究上述肌肉脂肪酸转运膜蛋白的结构功能、调控机制及相互关系,可能为肥胖等脂类代谢紊乱疾病的诊治提供新的手段.  相似文献   

9.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

10.
A procedure for preparing highly purified brush border membranes from rabbit kidney cortex using differential and density gradient centrifugation is described. Brush border membranes prepared by this procedure were substantially free of basal-lateral membranes, mitochondria, endoplasmic reticulum and nuclear material as evidenced by an enrichment factor of less than 0.3 for (Na+ + K+)-ATPase, succinate dehydrogenase, NADPH-cytochrome c reductase and DNA. Alkaline phosphatase was enriched ten fold indicating that the membranes were enriched at least 30 fold with respect to other cellular organelles. The yield of brush border membranes was 20%.Transport of d-glucose by the membranes was identical to that previously reported except that the Arrhenius plot for temperature dependence of transport was curvilinear (EA = 11.3–37.6 kcal/mol) rather than biphasic. Transport of p-aminohippuric acid and uric acid were increased by the presence of NaCl, either gradient or preequilibrated. However, no overshoot was obtained in the presence of a NaCl gradient, and KCl and LiCl also produced equivalent stimulation of transport suggesting a nonspecific ionic strength effect. Uptakes of p-aminohippuric acid and uric acid were not saturable, and were increased markedly by reducing the pH from 7.5 to 5.6. Probenecid (1 mM) reduced p-aminohippuric acid and uric acid (50 μM) uptake by 49% and 21%, respectively. We conclude that the uptake of uric acid and p-aminohippuric acid by renal brush border membranes of the rabbit occurs primarily by a simple solubility-diffusion mechanism.  相似文献   

11.
We used patch-clamp techniques and A6 distal nephron cells as a model to determine how cholesterol regulates the renal epithelial sodium channel (ENaC). We found that luminal methyl-β-cyclodextrin (mβCD, a cholesterol scavenger) did not acutely affect ENaC activity at a previously used concentration of 10 mm but significantly decreased ENaC activity both when the cell membrane was stretched and at a higher concentration of 50 mm. Luminal cholesterol had no effect on ENaC activity at a concentration of 50 μg/ml but significantly increased ENaC activity both when the cell membrane was stretched and at a higher concentration of 200 μg/ml. Confocal microscopy data indicate that membrane tension facilitates both mβCD extraction of cholesterol and A6 cell uptake of exogenous cholesterol. Together with previous findings that cholesterol in the apical membrane is tightly packed with sphingolipids and that stretch can affect lipid distribution, our data suggest that membrane tension modulates the effects of mβCD and cholesterol on ENaC activity, probably by facilitating both extraction and enrichment of apical cholesterol.  相似文献   

12.
Metabolic reprogramming is a common hallmark of cancer cells. Although some biochemical features have been clarified, there is still much to learn about cancer cell metabolism and its regulation. Aspartate-glutamate carrier isoform 1 (AGC1), encoded by SLC25A12 gene, catalyzes an exchange between intramitochondrial aspartate and cytosolic glutamate plus a proton across the mitochondrial membrane, so supplying aspartate to the cytosol. SLC25A12, expressed in brain, heart, and skeletal muscle, is silenced in normal liver. Here, we demonstrate that SLC25A12 gene is reactivated in hepatocellular carcinoma (HCC) HepG2 cell line through histone acetylation and CREB recruitment. Furthermore, SLC25A12 knockdown by small interfering RNA, impairs HepG2 cell proliferation by inducing cell cycle arrest. AGC1 sustains HCC cell growth by supplying cytosolic aspartate for nucleotide biosynthesis. In addition, SLC25A12-silenced HCC cells show a strong reduction of cell migration. Overall, we have provided evidence for molecular mechanisms controlling SLC25A12 gene expression in liver and pointing to an important role for AGC1 in HCC.  相似文献   

13.
三磷酸腺苷结合盒转运体A1(ABCA1)具有介导细胞内脂质流出,维持细胞脂质稳态的功能.新生的ABCA1必须经过胞内运输和各种化学修饰等过程,最终成为具有功能的成熟转运体,才能行使其转运脂质的功能,因此,ABCA1在胞内的运输过程和正确质膜定位对其介导胆固醇流出的功能至关重要.目前ABCA1相关研究主要集中于脂质转运方面,并提出各种胆固醇流出机制的模型,如通道转运模型、蘑菇状突起模型和胞吞-胞吐转运模型等.最近研究显示,ABCA1还具有调节质膜脂筏结构、参与免疫和炎症调节等新功能.本文主要针对ABCA1的胞内运输过程以及各种功能做一综述,以期为动脉粥样硬化相关疾病提供新的治疗靶点和途径.  相似文献   

14.
15.
Reabsorption of amino acids is an important function of the renal proximal tubule. pH-dependent amino acid transport has been measured previously using rabbit renal brush-border membrane vesicles (BBMV). The purpose of this investigation was to determine whether this pH-dependent uptake represents H+/amino acid cotransport via a PAT1-like transport system. The rabbit PAT1 cDNA was isolated (2296bp including both 5′ and 3′ untranslated regions and poly(A) tail) and the open reading frame codes for a protein of 475 amino acids (92% identity to human PAT1). Rabbit PAT1 mRNA was found in all tissues investigated including kidney. When expressed heterologously in a mammalian cell line, rabbit PAT1 mediates pH-dependent, Na+-independent uptake of proline, glycine, l-alanine and α-(methylamino)isobutyric acid. Proline uptake was maximal at pH?5.0 (Km?2.2±0.7?mM). A transport system with identical characteristics (ion dependency, substrate specificity) was detected in rabbit renal BBMV where an overshoot was observed in the absence of Na+ but in the presence of an inwardly directed H+ gradient. In the presence of Na+ and under conditions in which PAT1 transport function was suppressed, a second proline uptake system was detected that exhibited functional characteristics similar to those of the IMINO system. The functional characteristics of rabbit PAT1 in either mammalian cells or renal BBMV suggest that PAT1 is the low-affinity transporter of proline, glycine and hydroxyproline believed to be defective in patients with iminoglycinuria.  相似文献   

16.
17.
Consensus DNA sequences from human, mouse and/or rat were used to design oligonucleotide primers for equine homologues of exons 16, 17 and 20-23 of potassium chloride co-transporter (SLC12A4) and exons 10, 11 and 3, 4, respectively, for two amino acid transporters (SLC7A10 and SLC7A9). DNA sequences of the PCR products showed high sequence identity to these regions. Equine BAC clones were obtained for SLC12A4 and SLC7A10 and mapped to equine chromosomes ECA3p13 and ECA10p15, respectively, by fluorescence in situ hybridization (FISH). Several single nucleotide polymorphisms (SNP) were found. Substitutions of A/G were found within exon 17 of SLC12A4, within intron 11 of SLC7A10 and within intron 3 of SLC7A9. The SNP associated with SLC7A10 and SLC7A9 were sufficiently polymorphic to investigate associations with erythrocyte fragility among a group of 20 thoroughbred horses. A non-parametric rank-sum test showed a weak association between erythrocyte fragility and the SNP associated with SLC7A10 (P < 0.05).  相似文献   

18.
Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown. Here, we analyzed differences in transport kinetics between human and mouse OCT1 orthologs to identify amino acids that contribute to the polyspecificity of OCT1. Following stable transfection of HEK293 cells, we observed more than twofold differences in the transport kinetics of 22 out of 28 tested substrates. We found that the β2-adrenergic drug fenoterol was transported with eightfold higher affinity but at ninefold lower capacity by human OCT1. In contrast, the anticholinergic drug trospium was transported with 11-fold higher affinity but at ninefold lower capacity by mouse Oct1. Using human–mouse chimeric constructs and site-directed mutagenesis, we identified nonconserved amino acids Cys36 and Phe32 as responsible for the species-specific differences in fenoterol and trospium uptake. Substitution of Cys36 (human) to Tyr36 (mouse) caused a reversal of the affinity and capacity of fenoterol but not trospium uptake. Substitution of Phe32 to Leu32 caused reversal of trospium but not fenoterol uptake kinetics. Comparison of the uptake of structurally similar β2-adrenergics and molecular docking analyses indicated the second phenol ring, 3.3 to 4.8 Å from the protonated amino group, as essential for the affinity for fenoterol conferred by Cys36. This is the first study to report single amino acids as determinants of OCT1 polyspecificity. Our findings suggest that structure–function data of OCT1 is not directly transferrable between substrates or species.  相似文献   

19.
  相似文献   

20.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H158WHD161. To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号