首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid amide hydrolase (FAAH) regulates amidated lipid transmitters, including the endocannabinoid anandamide and its N-acyl ethanolamine (NAE) congeners and transient receptor potential channel agonists N-acyl taurines (NATs). Using both the FAAH inhibitor PF-3845 and FAAH(-/-) mice, we present a global analysis of changes in NAE and NAT metabolism caused by FAAH disruption in central and peripheral tissues. Elevations in anandamide (and other NAEs) were tissue dependent, with the most dramatic changes occurring in brain, testis, and liver of PF-3845-treated or FAAH(-/-) mice. Polyunsaturated NATs accumulated to very high amounts in the liver, kidney, and plasma of these animals. The NAT profile in brain tissue was markedly different and punctuated by significant increases in long-chain NATs found exclusively in FAAH(-/-), but not in PF-3845-treated animals. Suspecting that this difference might reflect a slow pathway for NAT biosynthesis, we treated mice chronically with PF-3845 for 6 days and observed robust elevations in brain NATs. These studies, taken together, define the anatomical and temporal features of FAAH-mediated NAE and NAT metabolism, which are complemented and probably influenced by kinetically distinguishable biosynthetic pathways that produce these lipids in vivo.  相似文献   

2.
Macrophage-derived endocannabinoids have been implicated in endotoxin (lipopolysaccharide (LPS))-induced hypotension, but the endocannabinoid involved and the mechanism of its regulation by LPS are unknown. In RAW264.7 mouse macrophages, LPS (10 ng/ml) increases anandamide (AEA) levels >10-fold via CD14-, NF-kappaB-, and p44/42-dependent, platelet-activating factor-independent activation of the AEA biosynthetic enzymes, N-acyltransferase and phospholipase D. LPS also induces the AEA-degrading enzyme fatty acid amidohydrolase (FAAH), and inhibition of FAAH activity potentiates, whereas actinomycin D or cycloheximide blocks the LPS-induced increase in AEA levels and N-acyltransferase and phospholipase D activities. In contrast, cellular levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are unaffected by LPS but increased by platelet-activating factor. LPS similarly induces AEA, but not 2-AG, in mouse peritoneal macrophages where basal AEA levels are higher, and the LPS-stimulated increase in AEA is potentiated in cells from FAAH-/- as compared with FAAH+/+ mice. Intravenous administration of 107 LPS-treated mouse macrophages to anesthetized rats elicits hypotension, which is much greater in response to FAAH-/- than FAAH+/+ cells and is susceptible to inhibition by SR141716, a cannabinoid CB1 receptor antagonist. We conclude that AEA and 2-AG synthesis are differentially regulated in macrophages, and AEA rather than 2-AG is a major contributor to LPS-induced hypotension.  相似文献   

3.
The cellular inactivation of the endogenous cannabinoid (endocannabinoid) anandamide (AEA) represents a controversial and intensely investigated subject. This process has been proposed to involve two proteins, a transporter that promotes the cellular uptake of AEA and fatty acid amide hydrolase (FAAH), which hydrolyzes AEA to arachidonic acid. However, whereas the role of FAAH in AEA metabolism is well-characterized, the identity of the putative AEA transporter remains enigmatic. Indeed, the indirect pharmacological evidence used to support the existence of an AEA transporter has been suggested also to be compatible with a model in which AEA uptake is driven by simple diffusion coupled to FAAH metabolism. Here, we have directly addressed the contribution of FAAH to AEA uptake by examining this process in neuronal preparations from FAAH(-/-) mice and in the presence of the uptake inhibitor UCM707. The results of these studies reveal that (i) care should be taken to avoid the presence of artifacts when studying the cellular uptake of lipophilic molecules like AEA, (ii) FAAH significantly contributes to AEA uptake, especially with longer incubation times, and (iii) a UCM707-sensitive protein(s) distinct from FAAH also participates in AEA uptake. Interestingly, the FAAH-independent component of AEA transport was significantly reduced by pretreatment of neurons with the cannabinoid receptor 1 (CB1) antagonist SR141716A. Collectively, these results indicate that the protein-dependent uptake of AEA is largely mediated by known constituents of the endocannabinoid system (FAAH and the CB1 receptor), although a partial contribution of an additional UCM707-sensitive protein is also suggested.  相似文献   

4.
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that catabolizes several bioactive lipids in vivo. Most of the physiological substrates of FAAH characterized to date belong to the N-acyl ethanolamine (NAE) class of fatty acid amides, including the endocannabinoid anandamide, the anti-inflammatory lipid N-palmitoyl ethanolamine, and the satiating factor N-oleoyl ethanolamine. We recently identified a second structural class of fatty acid amides regulated by FAAH in vivo: the N-acyl taurines (NATs). Global metabolite profiling revealed high concentrations of long chain (> or = C20) saturated NATs in the central nervous system (CNS) of FAAH(-/-) mice. Here, we use metabolite profiling to characterize the FAAH-NAT system in peripheral mouse tissues. Livers and kidneys of FAAH(-/-) mice possessed dramatic elevations in NATs, which, in contrast to those detected in the CNS, were enriched in polyunsaturated acyl chains (e.g., C20:4, C22:6). Peripheral NATs rose more than 10-fold within 1 h following pharmacological inactivation of FAAH and reached levels up to approximately 5000 pmol/g tissue (C22:6 in kidney), implicating a constitutive and highly active pathway for NAT metabolism in which FAAH plays an integral part. Interestingly, NATs were found to activate multiple members of the transient receptor potential (TRP) family of calcium channels, including TRPV1 and TRPV4, which are both expressed in kidney. The dramatic elevation in endogenous levels of NATs following acute or chronic inactivation of FAAH, in conjunction with the pharmacological effects of these lipids on TRP channels, suggests the existence of a second major lipid signaling system regulated by FAAH in vivo.  相似文献   

5.
Anandamide (AEA) and other bioactive N-acylethanolamines (NAEs) are primarily inactivated by the enzyme fatty acid amide hydrolase (FAAH). Recently, FAAH-2 was discovered in humans, suggesting an additional enzyme can mediate NAE inactivation in higher mammals. Here, we performed a biochemical characterization of FAAH-2 and explored its capacity to hydrolyze NAEs in cells. In homogenate activity assays, FAAH-2 hydrolyzed AEA and palmitoylethanolamide (PEA) with activities ∼6 and ∼20% those of FAAH, respectively. In contrast, FAAH-2 hydrolyzed AEA and PEA in intact cells with rates ∼30–40% those of FAAH, highlighting a potentially greater contribution toward NAE catabolism in vivo than previously appreciated. In contrast to endoplasmic reticulum-localized FAAH, immunofluorescence revealed FAAH-2 was localized on lipid droplets. Supporting this distribution pattern, the putative N-terminal hydrophobic region of FAAH-2 was identified as a functional lipid droplet localization sequence. Lipid droplet localization was essential for FAAH-2 activity as chimeras excluded from lipid droplets lacked activity and/or were poorly expressed. Lipid droplets represent novel sites of NAE inactivation. Therefore, we examined substrate delivery to these organelles. AEA was readily trafficked to lipid droplets, confirming that lipid droplets constitute functional sites of NAE inactivation. Collectively, these results establish FAAH-2 as a bone fide NAE-catabolizing enzyme and suggest that NAE inactivation is spatially separated in cells of higher mammals.  相似文献   

6.
Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an "endocannabinoid" signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH homologue was identified which catalyzed the hydrolysis of NAEs in vitro suggesting a FAAH-mediated pathway exists in plants for the metabolism of endogenous NAEs. Here, we provide evidence to support this concept by identifying candidate FAAH genes in monocots (Oryza sativa) and legumes (Medicago truncatula), which have similar, but not identical, exon-intron organizations. Corresponding M. truncatula and rice cDNAs were isolated and cloned into prokaryotic expression vectors and expressed as recombinant proteins in Escherichia coli. NAE amidohydrolase assays confirmed that these proteins indeed catalyzed the hydrolysis of 14C-labeled NAEs in vitro. Kinetic parameters and inhibition properties of the rice FAAH were similar to those of Arabidopsis and rat FAAH, but not identical. Sequence alignments and motif analysis of plant FAAH enzymes revealed a conserved domain organization for these members of the amidase superfamily. Five amino-acid residues determined to be important for catalysis by rat FAAH were absolutely conserved within the FAAH sequences of six plant species. Homology modeling of the plant FAAH proteins using the rat FAAH crystal structure as a template revealed a conserved protein core that formed the active site of each enzyme. Collectively, these results indicate that plant and mammalian FAAH proteins have similar structure/activity relationships despite limited overall sequence identity. Defining the molecular properties of NAE amidohydrolase enzymes in plants will help to better understand the metabolic regulation of NAE lipid mediators.  相似文献   

7.
The endocannabinoid anandamide (AEA) induces cell death in many cell types, but determinants of AEA-induced cell death remain unknown. In this study, we investigated the role of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in AEA-induced cell death in the liver. Primary hepatocytes expressed high levels of FAAH and were completely resistant to AEA-induced cell death, whereas primary hepatic stellate cells (HSCs) expressed low levels of FAAH and were highly sensitive to AEA-induced cell death. Hepatocytes that were pretreated or with the FAAH inhibitor URB597 isolated from FAAH(-/-) mice displayed increased AEA-induced reactive oxygen species (ROS) formation and were susceptible to AEA-mediated death. Conversely, overexpression of FAAH in HSCs prevented AEA-induced death. Since FAAH inhibition conferred only partial AEA sensitivity in hepatocytes, we analyzed additional factors that might regulate AEA-induced death. Hepatocytes contained significantly higher levels of glutathione (GSH) than HSCs. Glutathione depletion by dl-buthionine-(S,R)-sulfoximine rendered hepatocytes susceptible to AEA-mediated ROS production and cell death, whereas GSH ethyl ester prevented ROS production and cell death in HSCs. FAAH inhibition and GSH depletion had additive effects on AEA-mediated hepatocyte cell death resulting in almost 70% death after 24 h at 50 microm AEA and lowering the threshold for cell death to 500 nm. Following bile duct ligation, FAAH(-/-) mice displayed increased hepatocellular injury, suggesting that FAAH protects hepatocytes from AEA-induced cell death in vivo. In conclusion, FAAH and GSH are determinants of AEA-mediated cell death in the liver.  相似文献   

8.
N-Acylphosphatidylethanolamine (NAPE) and its hydrolysis product, N-acylethanolamine (NAE), are minor but ubiquitous lipids in multicellular eukaryotes. Various physiological processes are severely affected by altering the expression of fatty acid amide hydrolase (FAAH), an NAE-hydrolyzing enzyme. To determine the effect of altered FAAH activity on NAPE molecular species composition, NAE metabolism, and general membrane lipid metabolism, quantitative profiles of NAPEs, NAEs, galactolipids, and major and minor phospholipids for FAAH mutants of Arabidopsis were determined. The NAPE molecular species content was dramatically affected by reduced FAAH activity and elevated NAE content in faah knockouts, increasing by as much as 36-fold, far more than the NAE content, suggesting negative feedback regulation of phospholipase D-mediated NAPE hydrolysis by NAE. The N-acyl composition of NAPE remained similar to that of NAE, suggesting that the NAPE precursor pool largely determines NAE composition. Exogenous NAE 12:0 treatment elevated endogenous polyunsaturated NAE and NAPE levels in seedlings; NAE levels were increased more in faah knockouts than in wild-type or FAAH overexpressors. Treated seedlings with elevated NAE and NAPE levels showed impaired growth and reduced galactolipid synthesis by the "prokaryotic" (i.e., plastidic), but not the "eukaryotic" (i.e., extraplastidic), pathway. Overall, our data provide new insights into the regulation of NAPE-NAE metabolism and coordination of membrane lipid metabolism and seedling development.  相似文献   

9.
The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non-cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences.  相似文献   

10.
N-arachidonylethanolamine (AEA) accumulates during brain injury and postmortem. Because fatty acid amide hydrolase (FAAH) regulates brain AEA content, the purpose of this study was to determine its role in the postmortal accumulation of AEA using FAAH null mice. As expected, AEA content in immediately frozen brain tissue was significantly greater in FAAH-deficient (FAAH-/-) than in wild-type mice. However, AEA content was significantly lower in brains from FAAH-/- mice at 5 and 24 h postmortem. Similarly, wild-type mice treated in vivo with a FAAH inhibitor (URB532) had significantly lower brain AEA content 24 h postmortem compared with controls. These data indicate that FAAH contributes significantly to the postmortal accumulation of AEA. In contrast, the accumulations of two other N-acylethanolamines, N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA), were not reduced at 24 h postmortem in either the FAAH-/- mice or mice treated with URB532. FAAH-/- mice accumulated significantly less ethanolamine at 24 h postmortem compared with wild-type mice, suggesting that FAAH activity plays a role in the accumulation of ethanolamine postmortem. These data demonstrate that FAAH activity differentially affects AEA and OEA/PEA contents postmortem and suggest that AEA formation specifically occurs via an ethanolamine-dependent route postmortem.  相似文献   

11.
Human immunodeficiency virus type-1 coat glycoprotein gp120 causes delayed apoptosis in rat brain neocortex. Here, we investigated the possible role of the endocannabinoid system in this process. It is shown that gp120 causes a time-dependent increase in the activity and immunoreactivity of the anandamide (AEA)-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), paralleled by increased activity of the AEA membrane transporter and decreased endogenous levels of AEA. The AEA-synthesizing phospholipase D and the AEA-binding receptors were not affected by gp120. None of the changes induced by gp120 in the cortex were induced by bovine serum albumin, nor were they observed in the hippocampus of the same animals. Also, the activity of 5-lipoxygenase, which generates AEA derivatives able to inhibit FAAH, decreased down to approximately 25% of the control activity upon gp120 treatment, due to reduced protein level ( approximately 45%). In addition, the FAAH inhibitor methyl-arachidonoyl fluorophosphonate significantly reduced gp120-induced apoptosis in rat brain neocortex, whereas selective blockers of AEA membrane transporter or of AEA-binding receptors were ineffective. Taken together, these results suggest that gp120, by activating FAAH, decreases endogenous levels of AEA, and the latter effect seems instrumental in the execution of delayed neuronal apoptosis in the brain neocortex of rats.  相似文献   

12.
13.
CD1 mice lacking the CB1 receptors (knockout, KO) were compared with wild-type littermates for their ability to degrade N-arachidonoylethanolamine (anandamide, AEA) through a membrane transporter (AMT) and a fatty acid amide hydrolase (FAAH). The regional distribution and age-dependence of AMT and FAAH activity were investigated. Anandamide membrane transporter and FAAH increased with age in knockout mice, whereas they showed minor changes in wild-type animals. Remarkably, they were higher in all brain areas of 6-month-old knockout versus wild-type mice, and even higher in 12-month-old animals. The molecular mass (approximately 67 kDa) and isoelectric point (approximately 7.6) of mouse brain FAAH were determined and the FAAH protein content was shown to parallel the enzyme activity. The kinetic constants of AMT and FAAH in the cortex of wild-type and knockout mice at different ages suggested that different amounts of the same proteins were expressed. The cortex and hippocampus of wild-type and knockout mice contained the following N-acylethanolamines: AEA (8% of total), 2-arachidonoylglycerol (5%), N-oleoylethanolamine (20%), N-palmitoylethanolamine (53%) and N-stearoylethanolamine (14%). These compounds were twice as abundant in the hippocampus as in the cortex. Minor differences were observed in AEA or 2-arachidonoylglycerol content in knockout versus wild-type mice, whereas the other compounds were lower in the hippocampus of knockout versus wild-type animals.  相似文献   

14.
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.  相似文献   

15.
16.
Anandamide (N -arachidonoylethanolamine, AEA) is a major endocannabinoid, shown to impair mouse pregnancy and embryo development and to induce apoptosis in blastocysts. Here, we review the roles of AEA, of the AEA-binding cannabinoid (CB) receptors, of the selective AEA membrane transporter (AMT), and of the AEA-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), in human gestation. In particular, we discuss the interplay between the endocannabinoid system and the hormone-cytokine array involved in the control of human pregnancy, showing that the endocannabinoids take part in the immunological adaptation occurring during early pregnancy. In this line, we discuss the critical role of FAAH in human peripheral lymphocytes, showing that the expression of this enzyme is regulated by progesterone, Th1 and Th2 cytokines, which also regulate fertility. Moreover, we show that AEA and the other endocannabinoid, 2-arachidonoylglycerol, inhibit the release of the fertility-promoting cytokine leukemia inhibitory factor from human lymphocytes. Taken together, low FAAH and consistently high blood levels of AEA, but not CB receptors or AMT, can be early (<8 weeks of gestation) markers of spontaneous abortion, potentially useful as diagnostic tools for large-scale, routine monitoring of gestation in humans.  相似文献   

17.
Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats.  相似文献   

18.
Cannabinoid receptors and their endogenous ligands are potent inhibitors of neurotransmitter release in the brain. Here, we show that in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of the endocannabinoid anandamide (AEA) were increased, while the activity of its membrane transporter and hydrolase (fatty-acid amide hydrolase, FAAH) were decreased. These changes were not observed in the cerebellum of the same animals. Moreover, the frequency and amplitude of glutamate-mediated spontaneous excitatory post-synaptic currents were augmented in striatal spiny neurones recorded from parkinsonian rats. Remarkably, the anomalies in the endocannabinoid system, as well as those in glutamatergic activity, were completely reversed by chronic treatment of parkinsonian rats with levodopa, and the pharmacological inhibition of FAAH restored a normal glutamatergic activity in 6-OHDA-lesioned animals. Thus, the increased striatal levels of AEA may reflect a compensatory mechanism trying to counteract the abnormal corticostriatal glutamatergic drive in parkinsonian rats. However, this mechanism seems to be unsuccessful, since spontaneous excitatory activity is still higher in these animals. Taken together, these data show that anomalies in the endocannabinoid system induced by experimental parkinsonism are restricted to the striatum and can be reversed by chronic levodopa treatment, and suggest that inhibition of FAAH might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease.  相似文献   

19.
The endocannabinoid system modulates numerous physiological processes including nociception and reproduction. Anandamide (AEA) is an endocannabinoid that is inactivated by cellular uptake followed by intracellular hydrolysis by fatty acid amide hydrolase (FAAH). Recently, FAAH-like anandamide transporter (FLAT), a truncated and catalytically-inactive variant of FAAH, was proposed to function as an intracellular AEA carrier and mediate its delivery to FAAH for hydrolysis. Pharmacological inhibition of FLAT potentiated AEA signaling and produced antinociceptive effects. Given that endocannabinoids produce analgesia through central and peripheral mechanisms, the goal of the current work was to examine the expression of FLAT in the central and peripheral nervous systems. In contrast to the original report characterizing FLAT, expression of FLAT was not observed in any of the tissues examined. To investigate the role of FLAT as a putative AEA binding protein, FLAT was generated from FAAH using polymerase chain reaction and further analyzed. Despite its low cellular expression, FLAT displayed residual catalytic activity that was sensitive to FAAH inhibitors and abolished following mutation of its catalytic serine. Overexpression of FLAT potentiated AEA cellular uptake and this appeared to be dependent upon its catalytic activity. Immunofluorescence revealed that FLAT localizes primarily to intracellular membranes and does not contact the plasma membrane, suggesting that its capability to potentiate AEA uptake may stem from its enzymatic rather than transport activity. Collectively, our data demonstrate that FLAT does not serve as a global intracellular AEA carrier, although a role in mediating localized AEA inactivation in mammalian tissues cannot be ruled out.  相似文献   

20.
Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for the degradation of the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). FAAH inhibitors may be useful in treating many disorders involving inflammation and pain. Although brain FAAH may be the relevant target for inhibition, rat studies show a correlation between blood and brain FAAH inhibition, allowing blood FAAH activity to be used as a target biomarker. Building on experience with a rat leukocyte FAAH activity assay using [3H]AEA, we have developed a human leukocyte assay using stably labeled [2H4]AEA as substrate. The deuterium-labeled ethanolamine reaction product ([2H4]EA) was analyzed by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) in the positive electrospray ionization (ESI) mode. The response for [2H4]EA was linear from 10 nM to 10 μM, and the analysis time was less than 6 min/sample. Results using the [2H4]AEA and HPLC–MS/MS method agreed well with those obtained using the [3H]AEA radiometric assay. In addition to using a nonradioactive substrate, the HPLC–MS/MS method had increased sensitivity with lower background. Importantly, the assay preserved partial FAAH inhibition resulting from ex vivo treatment with a time-dependent irreversible inhibitor, suggesting its utility with clinical samples. The assay has been used to profile the successful inhibition of FAAH in recent clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号