首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recently described new form of hyperphenylalaninemia is characterized by the excretion of 7-substituted isomers of biopterin and neopterin and 7-oxo-biopterin in the urine of patients. It has been shown that the 7-substituted isomers of biopterin and neopterin derive from L-tetrahydrobiopterin and D-tetrahydroneopterin and are formed during hydroxylation of phenylalanine to tyrosine with rat liver dehydratase-free phenylalanine hydroxylase. We have now obtained identical results using human phenylalanine hydroxylase. The identity of the pterin formed in vitro and derived from L-tetrahydrobiopterin as 7-(1',2'-dihydroxypropyl)pterin was proven by gas-chromatography mass spectrometry. Tetrahydroneopterin and 6-hydroxymethyltetrahydropterin also are converted to their corresponding 7-substituted isomers and serve as cofactors in the phenylalanine hydroxylase reaction. Dihydroneopterin is converted by dihydrofolate reductase to the tetrahydro form which is biologically active as a cofactor for the aromatic amino acid monooxygenases. The 6-substituted pterin to 7-substituted pterin conversion occurs in the absence of pterin-4a-carbinolamine dehydratase and is shown to be a nonenzymatic process. 7-Tetrahydrobiopterin is both a substrate (cofactor) and a competitive inhibitor with 6-tetrahydrobiopterin (Ki approximately 8 microM) in the phenylalanine hydroxylase reaction. For the first time, the formation of 7-substituted pterins from their 6-substituted isomers has been demonstrated with tyrosine hydroxylase, another important mammalian enzyme which functions in the hydroxylation of phenylalanine and tyrosine.  相似文献   

2.
A 4a-carbinolamine intermediate is generated stoichiometrically during the tetrahydrobiopterin-dependent phenylalanine hydroxylation reaction catalyzed by phenylalanine hydroxylase. The dehydration of the carbinolamine is catalyzed by the enzyme, 4a-hydroxytetrahydropterin dehydratase. We have now examined the distribution of the dehydratase activity in various rat tissues by activity measurements and by immunoblot analysis to explore the possibility that the dehydratase may also play a role in tyrosine and tryptophan hydroxylation. The only two tissues that express relatively high dehydratase activity are liver and kidney, which are also the only two tissues that express phenylalanine hydroxylase activity. The dehydratase activity was generally very low in those tissues which contain high levels of tyrosine and tryptophan hydroxylase activity, except for the pineal gland. These results suggest that the dehydratase may not play an important role in the regulation of the synthesis of those neurotransmitters which are derived from the hydroxylated aromatic amino acids.  相似文献   

3.
4.
A method was developed to study the unsupplemented phenylalanine hydroxylase system in rat liver slices. All of the components of the system--tetrahydrobiopterin, dihydropteridine reductase, and the hydroxylase itself--are present under conditions which should be representative of the actual physiological state of the animal. The properties of the system in liver slices have been compared to those of the purified enzyme in vitro. The three pterins, tetrahydrobiopterin, 6,7-dimethyltetrahydropterin, and 6-methyltetrahydropterin, all stimulate the hydroxylation of phenylalanine when added to the liver slice medium in the presence of a chemical reducing agent. The relative velocities found at 1 mM phenylalanine and saturating pterin concentrations are: tetrahydrobiopterin, 1; 6,7-dimethyltetrahydropterin, 2.5; 6-methyltetrahydropterin, 13. This ratio of activities is similar to that found for the purified, native phenylalanine hydroxylase and indicates that the enzyme in vivo is predominantly in the native form. Rats pretreated with 6-methyltetrahydropterin showed enhanced phenylalanine hydroxylase activity in liver slices demonstrating for the first time that an exogenous tetrahydropterin can interact with the phenylalanine hydroxylase system in vivo. This finding opens up the possibility of treating phenylketonurics who still possess some residual phenylalanine hydroxylase activity with a tetrahydropterin like 6-methyltetrahydropterin which can give a large increase in rate over that seen with the natural cofactor, tetrahydrobiopterin.  相似文献   

5.
6.
The pH optimum of rat liver phenylalanine hydroxylase is dependent on the structure of the cofactor employed and on the state of activation of the enzyme. The tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase has a pH optimum of about 8.5. In contrast, the 6,7-dimethyltetrahydropterin-dependent activity is highest at pH 7.0. Activation of phenylalanine hydroxylase either by preincubation with phenylalanine or by limited proteolysis results in a shift of the pH optimum of the tetrahydrobiopterin-dependent activity to pH 7.0. Activation of the enzyme has no effect on the optimal pH of the 6,7-dimethyltetrahydropterin-dependent activity. The different pH optimum of the tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase is due to a change in the properties of the enzyme when the pH is increased from pH 7 to 9.5. Phenylalanine hydroxylase at alkaline pH appears to be in an altered conformation that is very similar to that of the enzyme which has been activated by preincubation with phenylalanine as determined by changes in the intrinsic protein fluorescence spectrum of the enzyme. Furthermore, phenylalanine hydroxylase which has been preincubated at an alkaline pH in the absence of phenylalanine and subsequently assayed at pH 7.0 in the presence of phenylalanine shows an increase in tetrahydrobiopterin-dependent activity similar to that exhibited by the enzyme which has been activated by preincubation with phenylalanine at neutral pH. Activation of the enzyme also occurs when m-tyrosine or tryptophan replace phenylalanine in the assay mixture. The predominant cause of the increase in activity of the enzyme immediately following preincubation at alkaline pH appears to be the increase in the rate of activation by the amino acid substrate. However, in the absence of substrate activation, phenylalanine hydroxylase preincubated at alkaline pH displays an approximately 2-fold greater intrinsic activity than the native enzyme.  相似文献   

7.
Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.  相似文献   

8.
The interaction between phenylalanine 4-mono-oxygenase and analogues of the natural cofactor (6R)-tetrahydrobiopterin [(6R)-BH4] was studied. The rate of cyclic AMP-dependent phosphorylation of phenylalanine 4-mono-oxygenase was inhibited only by those pterins [(6R)-BH4, (6S)-BH4 and 7,8-dihydrobiopterin (BH2)] that were able to decrease the potency and efficiency of phenylalanine as an allosteric activator of the hydroxylase. Since BH2 lacks cofactor activity, this was not required to modulate either the phosphorylation or the phenylalanine-activation of the hydroxylase. Half-maximal inhibition of the phosphorylation was observed at 1.9 microM-(6R)-BH4, 9 microM-(6S)-BH4 and 17 microM-BH2. Competition experiments indicated that all three pterins acted through binding to the cofactor site of the hydroxylase. Since the phosphorylation site and the cofactor binding site are known to reside, respectively, in the N- and C-terminal domains of the hydroxylase, the pterins were able to induce an interdomain conformational change. BH2, whose dihydroxypropyl group is not subject to epimerization, and (6S)-BH4 both inhibited the phosphorylation less efficiently than did the (6R)-epimer of BH4. Pterins with different spatial arrangements of the dihydroxypropyl side chain thus appeared to elicit different conformations of the phosphorylation site. The hydroxylase reaction showed a higher apparent Km for (6S)-BH4 than for (6R)-BH4 both when the native and the phenylalanine-activated enzyme were tested. For the activated enzyme Vmax was 40% lower with the (6S)-epimer than the (6R)-epimer, also when the more rapid enzyme inactivation occurring with the former cofactor was taken into account.  相似文献   

9.
A full-length human phenylalanine hydroxylase cDNA has been recombined with a prokaryotic expression vector and introduced into Escherichia coli. Transformed bacteria express phenylalanine hydroxylase immunoreactive protein and pterin-dependent conversion of phenylalanine to tyrosine. Recombinant human phenylalanine hydroxylase produced in E. coli has been partially purified, and biochemical studies have been performed comparing the activity and kinetics of the recombinant enzyme with native phenylalanine hydroxylase from human liver. The optimal reaction conditions, kinetic constants, and sensitivity to inhibition by aromatic amino acids are the same for recombinant phenylalanine hydroxylase and native phenylalanine hydroxylase. These data indicate that the recombinant human phenylalanine hydroxylase is an authentic and complete phenylalanine hydroxylase enzyme and that the characteristic aspects of phenylalanine hydroxylase enzymatic activity are determined by a single gene product and can be constituted in the absence of any specific accessory functions of the eukaryotic cell. The availability of recombinant human phenylalanine hydroxylase produced in E. coli will expedite physical and chemical characterization of human phenylalanine hydroxylase which has been hindered in the past by inavailability of the native enzyme for study.  相似文献   

10.
We have investigated the p-chlorophenylalanine-dependent loss of phenylalanine hydroxylase activity in cultured hepatoma cells. The similarity of the effect of p-chlorophenylalanine on phenylalanine hydroxylase in the hepatoma cells and that reported from studies in vivo indicates that the loss of phenylalanine hydroxylase activity is due to a direct interaction of the amino acid analogue with the liver. We can find no evidence that the loss of phenylalanine hydroxylase activity is due to: a direct inactivation of the hydroxylase by p-chlorophenylalanine or an inhibitor produced by p-chlorophenylalanine treatment; an effect similar to that of p-fluorophenylalanine; or leakage of enzyme from the cells during p-chlorophenylalanine treatment. The data presented indicate: (a) the p-chlorophenylalanine effect is rather specific for phenylalanine hydroxylase; (b) following p-chlorophenylalanine removal, new protein synthesis is necessary for restoration of the hydroxylase activity; (c) the rate of loss of phenylalanine hydroxylase activity after the addition of p-chlorophenylalanine is much faster than the rate of restoration of the hydroxylase activity after removal of p-chlorophenylalanine; (d) even in the presence of p-chlorophenylalanine, hydrocortisone greatly stimulates the hydroxylase activity; (e) the cell density-dependent increase of phenylalanine hydroxylase activity is blocked by p-chlorophenylalanine. A discussion of the possible mechanisms of p-chlorophenylalanine-dependent loss of phenylalanine hydroxylase is presented. To measure very low leanine-dependent loss of phenylalanine hydroxylase is presented. To measure very low levels of phenylalanine hydroxylase activity, a new procedure, based on isotope dilution, was developed for isolating the tyrosine formed during the enzymatic reaction.  相似文献   

11.
7-Substituted pterins. A new class of mammalian pteridines   总被引:2,自引:0,他引:2  
Three novel pteridines have been isolated from the urine of patients with a new variant of 6-(L-erythro-1',2'-dihydroxypropyl)-5,6,7,8-tetrahydropterin (tetrahydrobiopterin) deficiency, showing hyperphenylalaninemia. From the results of high performance liquid chromatography, oxidative degradation, and gas chromatography-electron impact mass spectrometry, their structures were identified as 7-(D-erythro-1',2',3'-trihydroxypropyl)-pterin (7-neopterin), 7-(L-erythro-1',2'-dihydroxypropyl)-pterin (7-biopterin), and 6-oxo-7-(L-erythro-1',2'-dihydroxypropyl)-pterin (6-oxo-7-biopterin). The ratio of biopterin to 7-biopterin in the patients' urines was 1:1, and after oral loading with tetrahydrobiopterin, 7-biopterin excretion rose parallel to biopterin. This finding suggests that 7-substituted pterins may be formed endogenously by a yet unknown isomerization reaction. The cause of hyperphenylalaninemia is still unclear. The activities of the enzymes involved in tetrahydrobiopterin biosynthesis and regeneration were found to be normal in the patients, and no effect of 7-biopterin on these enzymes was observed in vitro. However, compared with the normal cofactor, tetrahydrobiopterin, the Km values of tetrahydro-7-biopterin for phenylalanine hydroxylase and dihydropteridine reductase are 20 and 5 times higher, respectively.  相似文献   

12.
Herein we demonstrate that Drosophila larvae possess a synthetic activity capable of converting phenylalanine to tyrosine. This system is readily extractable and displays many characteristics of phenylalanine hydroxylase systems described in other organisms, the most notable being that a tetrahydropteridine is required for full expression of activity. The level of phenylalanine hydroxylase activity present in the organism varies with the stage of development: from an undetected level of activity at the first larval instar, there is a rapid increase in phenylalanine hydroxylase activity which reaches a peak at the time of puparium formation, after which there is a rapid decrease again to an undetected level.  相似文献   

13.
The cell density dependent regulation of phenylalanine hydroxylase activity in Reuber hepatoma (H4) cells growing in monolayer culture has been examined in detail. We found that 48 h or more after subculture phenylalanine hydroxylase activity in the cells is an exponential function of cell density (cells/cm2). No discontinuity in the relationship is seen with the formation of a confluent monolayer.A rapid loss or a rapid gain in enzyme activity in the cells is observed after diluting or concentrating the cell cultures. The two processes appear qualitatively different. The loss in activity is a first order process which starts at the time of subculture with the rate of loss dependent on the density of subculture. The gain in activity begins 6–8 h after subculture to a higher density; it can be blocked by cycloheximide and has a maximum rate of increase that is about 10% of the maximum rate of loss of activity.Using immunochemical procedures, we found the same amount of phenylalanine hydroxylase associated antigen in Reuber cells from low density as from high density cultures, over a range of phenylalanine hydroxylase specific activities from 0.2 to 4.2. After concentrating cells to a higher density, no increase in enzyme antigen was observed, despite a several-fold increase in enzyme activity and a requirement for protein synthesis during the process. These observations imply the presence of an active and inactive phenylalanine hydroxylase with the relative amounts of each determined by the cell density. The effects of db-cAMP are discussed. Evidence is presented here that the hydrocortisone stimulation of phenylalanine hydroxylase activity works through a different mechanism than the cell density dependent process.  相似文献   

14.
The substrates of dihydropteridine reductase (EC 1.6.99.7), quinonoid 7,8-dihydro(6 H)pterins, are unstable and decompose in various ways. In attempting to prepare a more stable substrate, 6,6,8-trimethyl-5,6,7,8-tetrahydro(3 H)pterin was synthesised and the quinonoid 6,6,8-trimethyl-7,8-dihydro(6 H)pterin derived from it is extremely stable with a half-life in 0.1 M Tris/HCl (pH 7.6, 25 degrees C) of 33 h. Quinonoid 6,6,8-trimethyl-7,8-dihydro(6 H)pterin is not a substrate for dihydropteridine reductase but it is reduced non-enzymically by NADH at a significant rate and it is a weak inhibitor of the enzyme: I50 200 microM, pH 7.6, 25 degrees C when using quinonoid 6-methyl-7,8-dihydro(6 H)pterin as substrate. 6,6,8-Trimethyl-5,6,7,8-tetrahydropterin is a cofactor for phenylalanine hydroxylase (EC 1.14.16.1) with an apparent Km of 0.33 mM, but no cofactor activity could be detected with tyrosine hydroxylase (EC 1.14.16.2). Its phenylalanine hydroxylase activity, together with the enhanced stability of quinonoid 6,6,8-trimethyl-7,8-dihydro(6 H)pterin, suggest that it may have potential for the treatment of variant forms of phenylketonuria.  相似文献   

15.
16.
In the presence of phenylalanine and molecular oxygen, activated phenylalanine hydroxylase catalyzes the oxidation of tetrahydrobiopterin. The oxidation of this tetrahydropterin cofactor also proceeds if the substrate, phenylalanine, is replaced by its product, tyrosine, in the initial reaction mixture. These two reactions have been defined as coupled and uncoupled, respectively, because in the former reaction 1 mol of phenylalanine is hydroxylated for every mole of tetrahydrobiopterin oxidized, whereas in the latter reaction there is no net hydroxylation of tyrosine during the oxidation of the tetrahydropterin. During the course of the coupled oxidation of tetrahydrobiopterin, a pterin 4a-carbinolamine intermediate can be detected by ultraviolet spectroscopy (Kaufman, S. (1976) in Iron and Copper Proteins (Yasunobu, K. T., Mower, H. F., and Hayaishi, O., eds) pp. 91-102, Plenum Publishing Corp., New York). Dix and Benkovic (Dix, T. A., and Benkovic, S. J. (1985) Biochemistry 24, 5839-5846) have postulated that the formation of this intermediate only occurs when the oxidation of the tetrahydropteridine is tightly coupled to the concomitant hydroxylation of the aromatic amino acid. However, during the tyrosine-dependent uncoupled oxidation of tetrahydrobiopterin by phenylalanine hydroxylase, we have detected the formation of a spectral intermediate with ultraviolet absorbance that is essentially identical to that of the carbinolamine. Furthermore, this absorbance can be eliminated by the addition of 4a-carbinolamine dehydratase, an enzyme which catalyzes the dehydration of the 4a-carbinolamine. Quantitation of this intermediate suggests that there are two pathways for the tyrosine-dependent uncoupled oxidation of tetrahydrobiopterin by phenylalanine hydroxylase because only about 0.3 mol of the intermediate is formed per mol of the cofactor oxidized.  相似文献   

17.
The uncoupled portion of the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase can be described by the same model as we have recently derived for the fully uncoupled reaction (Davis, M.D. and Kaufman, S. (1989) J. Biol. Chem.264, 8585–8596). Although essentially no hydrogen peroxide is formed during the fully coupled oxidation of tetrahydrobiopterin or 6-methyltetrahydropterin by phenylalanine hydroxylase when phenylalanine is the amino acid substrate, significant amounts of hydrogen peroxide are formed during the partially uncoupled oxidation of 6-methyltetrahydropterin whenpara-fluorophenylalanine orpara-chlorophenylalanine are used in place of phenylalanine. Similarly, during the partially uncoupled oxidation of the unsubstituted pterin, tetrahydropterin, even in the presence of phenylalanine, hydrogen peroxide formation is detected. The 4a-carbinolamine tetrahydropterin intermediate has been observed during the fully uncoupled tyrosine-dependent oxidations of tetrahydropterin and 6-methyltetrahydropterin by lysolecithin-activated phenylalanine hydroxylase, suggesting that this species is also a common intermediate for uncoupled oxidations by this enzyme.Abbreviations BH4 6-[dihydroxypropyl-(L-erythro)-5,6,7,8-tetrahydropterin (tetrahydrobiopterin) - 6MPH4 6-methyl-5,6,7,8-tetrahydropterin - PH4 5,6,7,8-tetrahydropterin - BH3OH 4a-hydroxytetrahydropterin (4a-carbinolamine) - qBH2 quinonoid dihydrobiopterin - q6MPH2 quinonoid dihydro-6-methylpterin - qPH2 quinoid dihydropterin - PAH phenylalanine hydroxylase - DHPR dihydropteridine reductase - PHS phenylalanine hydroxylase stimulating enzyme which is 4a-carbinolamine dehydratase - SOD superoxide dismutase - HPLC high performance liquid chromatography - R.T. retention time Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

18.
Buchnera aphidicola, the prokaryotic endosymbiont of aphids, complements dietary deficiencies with the synthesis and provision of several essential amino acids. We have cloned and sequenced a region of the genome of B. aphidicola isolated from Acyrthosiphon pisum which includes the two-domain aroQ/pheA gene. This gene encodes the bifunctional chorismate mutase-prephenate dehydratase protein, which plays a central role in L-phenylalanine biosynthesis. Two changes involved in the overproduction of this amino acid have been detected. First, the absence of an attenuator region suggests a constitutive expression of this gene. Second, the regulatory domain of the Buchnera prephenate dehydratase shows changes in the ESRP sequence, which is involved in the allosteric binding of phenylalanine and is strongly conserved in prephenate dehydratase proteins from practically all known organisms. These changes suggest the desensitization of the enzyme to inhibition by phenylalanine and would permit the bacterial endosymbiont to overproduce phenylalanine.  相似文献   

19.
The rate of release of deuterons into the body water from 2,3,4,5,6-pentadeutero-L-phenylalanine has been shown to be a valid measure of the activity of the phenylalanine hydroxylase system in vivo. At a dose of 0.5 g/kg, the rate of release of deuterons is linear for 60 to 90 min. Male rats, which had previously been shown to have 22 to 25% more phenylalanine hydroxylase activity in liver extracts than female rats, produced deuterons from deuterated phenylalanine at a rate 20 to 30% greater than female rats. p-Chlorophenylalanine, which irreversibly inhibits phenylalanine hydroxylase in vivo, caused a similar degree of inhibition of the rate of deuteron formation as was found when phenylalanine hydroxylase was measured in extracts from the same group of animals. Methotrexate, which inhibits the phenylalanine hydroxylase system by preventing regeneration of the tetrahydropteridine cofactor, caused parallel inhibition of the in vivo assay as well as when the conversion of phenylalanine to tyrosine was measured in liver slices. Randomly ring-tritiated phenylalanine can be used interchangeably with ring-deuterated phenylalanine if greater sensitivity is needed in the in vivo assay for phenylalanine hydroxylase. However, a dose of 20 to 30 muCi/kg is required. The in vivo deuterium release assay described in this paper should be useful in studying the physiological control of the phenylalanine hydroxylating system. It also may be of value in differentiating between individuals who are heterozygotes for phenylketonuria and those who are homozygotes for hyperphenylalaninemia.  相似文献   

20.
L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbon or nitrogen was dependent upon (sigma)(sup54), as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号