首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estradiol has been shown to increase the level of thioredoxin mRNA in the uterus of the ovariectomized (ovx) rat. In this study the influence of progesterone, androgens, the anti-estrogen ICI 182780 and the anti-androgen Flutamid on thioredoxin expression, has been studied in the rat uterus. Thioredoxin mRNA concentrations were determined by solution hybridization. Ovx rats treated with progesterone alone showed no effect on thioredoxin expression. Combined treatment of ICI 182780 and estradiol attenuated the estradiol-induced increase in thioredoxin mRNA. When ovx rats were treated with a testosterone depot, the amount of thioredoxin mRNA was increased five-fold after 48 h and remained at that level during the rest of the 168 h monitored. A similar increase in thioredoxin mRNA could be seen after 5-dihydrotestosterone treatment, indicating a true androgenic effect. In addition, the anti-androgen Flutamid attenuated the thioredoxin mRNA increase seen after 5-dihydrotestosterone treatment alone.

It is concluded that thioredoxin mRNA is regulated by growth promoting gonadal steroids in the rat uterus. The attenuation of the estrogen and androgen-induced increases of the thioredoxin mRNA with ICI 182780 and Flutamid, indicate that the effect is mediated via the estrogen receptor and androgen receptor respectively. None of these hormones affected the hepatic thioredoxin mRNA level in the same animals.  相似文献   


2.
Ovariectomy of adult female rats (200-230g) resulted in an increase in beta-adrenergic receptors in the cerebral cortex, hypothalamus and anterior pituitary. The anterior pituitary had the largest overall increase as well as the most rapid increase in beta-adrenergic receptor density of the tissues examined. The increase in hypothalamic or cerebral cortical beta-adrenergic receptors became apparent only long after ovariectomy (7-14 days). Fourteen days after ovariectomy, the density of beta-adrenergic receptors was 79%, 40%, and 24% in excess of control values in crude membranes prepared from anterior pituitary, hypothalamus and cerebral cortex, respectively. Over the same interval, the plasma concentration of luteinizing hormone (LH) increased 28-fold, while the concentration of follicle-stimulating hormone (FSH) rose 5-fold compared to control levels. Estradiol replacement (20 micrograms/kg/day) in these animals for four days before sacrifice concomitantly reduced plasma levels of the gonadotropins as well as the density of beta-adrenergic receptors in both the anterior pituitary and the hypothalamus. Long-term steroid replacement during the fifth and sixth week after ovariectomy, with implants of estradiol and progesterone which released the steroids in approximately physiological concentrations, significantly reduced beta-adrenergic density in anterior pituitary, but not in the hypothalamic membranes. This treatment significantly reduced plasma LH, but not FSH. Beta-adrenergic receptor density was also found to fluctuate significantly during the 4-day estrous cycle. The highest values were found on proestrus, and the lowest on diestrus 1. These studies indicate that changes in plasma concentrations of gonadal steroids (e.g. during the estrous cycle) influence the density of beta-adrenergic receptors in tissues involved in the control and release of anterior pituitary gonadotropins.  相似文献   

3.
We have previously demonstrated that neuronal oxytocin mRNA increases during the pubertal development of female rats. In this paper we have examined the factors that regulate this developmental increase in both male and female rats. Northern blot analysis demonstrated that neural oxytocin mRNA increased 5- to 10-fold from postnatal day 20 (P20) to P60 in animals of both sexes, coincident with puberty. Mature male rats and females at all stages of the estrous cycle expressed similar levels of neural oxytocin mRNA. Pubertal up-regulation of oxytocin mRNA was largely, but not completely, inhibited by prepubescent gonadectomy, indicating a requirement for intact gonads as well as some other as yet undefined factor(s). Pubertal treatment of gonadectomized animals with estradiol or testosterone abolished the effects of gonadectomy; treated animals expressed levels of neural oxytocin mRNA similar to those in controls. However, treatment of prepubertal animals with estradiol or testosterone from P10 to P20 had no effect on oxytocin mRNA levels, suggesting that neural maturation or other factors are necessary requisites for steroid sensitivity. To determine whether neural activin played any role in regulating oxytocin mRNA during puberty, we examined levels of inhibin/activin beta A-chain mRNA. This mRNA was expressed at similar levels in all brain regions and did not vary as a function of gonadectomy or steroid treatment, making it unlikely that activin mediates the observed changes. Together, these data indicate that neural oxytocin mRNA is induced by gonadal steroids during puberty, and suggest a mechanism for coordinating development of reproductive functions with other pubertal changes.  相似文献   

4.
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.  相似文献   

5.
To begin defining the factors regulating neurotransmitter receptor expression, we examined beta-adrenergic receptors in rat liver in vivo and in primary liver cultures under defined hormonal conditions. beta-receptors described a remarkable developmental profile in vivo, increasing fivefold between embryonic days 16 and 20, and decreasing tenfold by early adulthood. The developmental decrease reflected reduced receptor number without a change in receptor properties. The ontogenetic decrease appeared to be specific for beta-receptors; alpha-receptors developed in a hyperbolic fashion, reaching high plateau values by the third postnatal week. Adult rat liver cells plated into culture re-expressed high beta-receptor levels, exhibiting a 4-8-fold increase. A similar pattern of expression of the beta-receptors, having similar pharmacological properties, was observed in primary liver cultures maintained in serum-free medium, in a serum-supplemented medium or in several variations of a serum-free, hormonally defined medium designed for primary liver cultures. Thus, the degree of expression of the beta-receptors was not found affected by various hormones, by serum, or by any medium condition. By contrast, the degree of expression of the beta-receptors was markedly sensitive to cell density. High expression of the beta-receptors was observed at low cell densities (1-3 x 10(6) cells/150 mm dish), and low expression or no expression was observed in confluent cultures (10-20 x 10(6) cells/150 mm dish). Our experiments suggest that beta-receptor expression does not follow an immutable program, but may be regulated by density-dependent cell-cell interactions.  相似文献   

6.
Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells   总被引:2,自引:0,他引:2  
Gordon CM  LeBoff MS  Glowacki J 《Cytokine》2001,16(5):178-186
Adrenal and gonadal steroids have protective effects on the skeleton that may be conferred partly by their ability to inhibit bone resorptive cytokines such as interleukin 6 (IL-6). We tested the hypothesis that IL-6 secretion by human marrow cells and a line of marrow stromal cells (KM101) is inhibited by dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and 17beta-oestradiol (E(2)). We also examined whether the estrogen status of the donor influenced the steroids' effects on IL-6 secretion. Femoral bone marrow was obtained from 19 postmenopausal women undergoing hip arthroplasty, and from seven subjects receiving oestrogen replacement therapy (ERT) at the time of surgery. Low-density mononuclear cells were isolated and cultured in IL-1beta-supplemented media, with or without DHEA, DHT or E(2). DHEA suppressed IL-6 more consistently than DHT or E(2): DHEA significantly suppressed IL-6 in 84% of cultures, DHT suppressed IL-6 in 58%, and E(2)did so in 50%. The magnitude of IL-6 inhibition was also greater for DHEA (group mean, treated/control of 62%) compared to DHT (81%) and E(2)(76%). In cultures from subjects receiving ERT, DHEA and DHT suppressed IL-6 in some, whereas E(2)did not suppress IL-6 secretion. Each steroid also significantly inhibited IL-6 secretion by KM101 cells. In summary, in marrow cultured from postmenopausal women, DHEA suppressed IL-6 secretion more consistently and to a greater degree than did DHT and E(2). Second, the inhibitory effect of E(2)was abrogated in marrow from women receiving ERT.  相似文献   

7.
Denervation of rat ventral prostate has been accomplished by excising prostatic tissue fragments and implanting them under the renal capsules of intact syngeneic rats. This resulted in a substantial reduction of expression of a major organ-specific secretory protein, prostatic binding protein (PBP). The depressed level of PBP and its subunits and mRNAs could be restored, however, to as much as 80% of control levels by the administration of a pharmacological dose of exogenous androgen, testosterone propionate (TP), and/or a beta-adrenergic agonist, isoproterenol (ISO). Furthermore, compared to ascorbate-treated controls, TP and ISO increased the synthesis of total cellular protein and PBP by the prostatic renal implants. TP and/or ISO also remodelled the luminal epithelial structure and elevated secretory functions. ISO alone had no effect, however, in castrated animals, indicating that androgen plays a dominant role in the restoration of tissue PBP content. Concomitant to increased PBP content and remodelling of prostatic histomorphology, androgen was also found to raise the depressed levels of beta 2-adrenergic and androgen receptors in the prostatic isografts maintained in intact hosts. In contrast, although an established rat prostatic epithelial cell line (NbE-1) contains high affinity androgen receptor, androgen failed to restore beta-adrenergic receptor as well as PBP content in this cultured cell line. These results, taken together, suggest that a tight coupling between androgen receptor and beta 2-adrenergic receptor pathways may be a prerequisite for PBP expression and functional differentiation in the rat ventral prostate gland.  相似文献   

8.
9.
The mechanism underlying the sexually dimorphic pattern of growth hormone (GH) secretion in the rat has not been clearly elucidated. In the present study, we assayed the possible direct effect of gonadal steroids on both somatostatin (SS) and growth hormone-releasing factor (GRF) in fetal rat hypothalamic cells in culture. Hypothalamic cells, obtained by mechanical dispersion, were maintained as monolayer cultures in serum-supplemented medium. After 20 days in culture, cells were incubated with serum free medium containing testosterone (T, 10, 20, 40 ng/dl) or estradiol (E, 0.1, 1, 10 ng/dl) for 48 h. At the end of the experiments, immunoreactive SS (IR-SS) and immunoreactive GRF (IR-GRF) were measured by specific radioimmunoassays (RIAs) in media and cell extracts. After 48 h of incubation with testosterone, somatostatin in both media and cells was significantly reduced. On the contrary, this treatment lead to a dose-dependent increase in media and cell GRF content. When cells were incubated with estradiol for 48 h, a significant inhibition in medium SS release was observed, whereas intracellular SS slightly increased at the highest concentration of 10 ng/dl. Estradiol treatment resulted in an inconsistent decrease in media and cells IR-GRF. Our results indicate that both SS and GRF are under the influence of testosterone and estradiol acting at the hypothalamic level, and furthermore suggest that at this stage of brain development, gonadal steroids may regulate GH secretion through their ability to modulate hypothalamic SS and GRF.  相似文献   

10.
11.
Given the emerging roles of microRNAs (miRNAs) as key regulator of mRNA stability we assessed their expression profile in paired myometrium and leiomyoma, their isolated smooth muscle cells (MSMC and LSMC), a spontaneously transformed leiomyoma smooth muscle cells (T-LSMC) and SK-LMS-1, a leiomyosarcoma cell line using microarray and real time PCR.Based on global normalization of expression values of 385 miRNAs and statistical analysis (anova), 91 miRNAs were expressed above the threshold levels in myometrium, with a progressive decline in numbers in leiomyomas, MSMC, LSMC, T-LSMC and SK-LMS-1 (P<0.05).We selected and validated the expression of miR-20a, miR-21, miR-26a, miR-18a, miR-206, miR-181a and miR-142-5p and found their differential expression in tissue and cell-specific manners (P<0.05).Treatments of MSMC and LSMC with 17beta estradiol and medroxyprogesterone acetate (10(-8)M), or ICI-182780 and RU-486 (10(-6)M) resulted in differential regulation of these miRNAs (P<0.05).In conclusion, the expression of a number of miRNAs in myometrium and leiomyoma with their progressive aberrant from normal MSMC into LSMC, transformed and cancerous stage, suggests that miRNAs and their regulation by ovarian steroids play a key role in pathogenesis of leiomyoma through gene expression stability.  相似文献   

12.
13.
A regulatory model of human placental progesterone synthesis is based on studies with isolated placental enzymes. Steroids causing a dose-dependent inhibition are listed in the standing order of their inhibitory potency (I50 (microM)/Ki value (microM)/type of inhibition: c = competitive and nc = non competitive). Cholesterol side chain cleavage enzyme (mitochondria): Mainly regulated by hydroxylated cholesterol derivates. No inhibition was observed by cholesterylesters and by other naturally occurring steroids tested. 5-ene-3 beta-hydroxysteroid dehydrogenase-isomerase (mitochondria): 6 beta-hydroxyprogesterone (nc), dehydroepiandrosterone (0.32/0.82/c), 20 alpha-dihydroprogesterone (0.38/-/nc), progesterone (0.46/-), estrone (0.56/0.1/c), estradiol (0.1/0.8/c), 17 alpha-hydroxyprogesterone (2.1/-/nc), 17 alpha-hydroxypregnenolone (0.4/-/c), dehydroepiandrosterone sulfate (2.5/-/c), cortisone (5.0/-), cortisol (100/-). 20 alpha-hydroxysteroid dehydrogenase (cytoplasmic): estrone (0.26/0.7/c), estradiol (0.28/0.9/c), pregnenolone (4.4/9.2/c), 5 alpha-pregnan-3 beta-ol-20-one (4.6/-/nc), estriol (5.1/11.5/c); dehydroepiandrosterone (7.2/14.0/c), 5 alpha-dihydrotestosterone (26.0/-/nc), progesterone (33.0/48.0/c), dehydroepiandrosterone sulfate (50.0/23.0/nc), and testosterone (59.0/63.0/c). An autoregulatory mechanism of placental progesterone synthesis is postulated which is in good agreement with data published by others proving that placental progesterone synthesis is independent of the endocrine organs of the mother and the fetus.  相似文献   

14.
Large-conductance, calcium-dependent potassium (BKCa) channels are implicated in maintaining uterine quiescence during pregnancy. The mechanisms whereby calcium sensitivity of the BKCa channel is dramatically removed at parturition remain unknown. The aim of the present study was to investigate whether this loss of calcium sensitivity of the BKCa channel with the onset of labor is associated with changes in the protein expression of the alpha- and/or beta-subunit or arises from a physical dissociation of the alpha-subunit from the beta-subunit. The beta-subunit is a key determinant of BKCa-channel Ca2+ sensitivity. Western blot analysis, using alpha- and beta-subunit-specific antibodies, detected bands of 110-125 and 36 kDa, respectively. Protein expression levels of the alpha-subunit in term labor myometrium were significantly reduced compared with term pregnancy without labor. Furthermore, alpha-subunit levels at term pregnancy were significantly increased relative to the nonpregnant state, whereas levels at preterm gestations were unchanged. Densitometric analysis demonstrated significantly decreased beta-subunit levels in term and preterm labor samples compared with term nonlabor samples. Immunoprecipitation studies revealed the presence of both the alpha- and beta-subunits in samples taken before or after the onset of labor. We conclude that during labor, the alpha-subunit is not physically uncoupled from the beta-subunit, but a decline occurs in the level of beta-subunit protein, which may underlie the loss of calcium and voltage sensitivity of the BKCa channel with labor. Furthermore, reduced beta-subunit protein in preterm labor myometrium implies that ion channels may also contribute to pathophysiological labor.  相似文献   

15.
Glucorticoids and adrenergic stimulation are both thought to control the development of beta-adrenergic receptors/responses. In the current study, rats were exposed to dexamethasone or terbutaline during late gestation and the development of beta-receptor binding capabilities and adenylate cyclase activity evaluated in membrane preparations from kidney and lung. Prenatal dexamethasone exposure produced postnatal adrenergic hyperreactivity of kidney adenylate cyclase; the effect resulted from increases in the enzyme itself, as both basal adenylate cyclase and forskolin-stimulation of the enzyme were also increased by dexamethasone. Similarly, prenatal terbutaline exposure evoked increases in basal, isoproterenol-stimulated and forskolin-stimulated adenylate cyclase in the kidney. In the lung, dexamethasone produced an initial postnatal deficit in basal adenylate cyclase and deficient responsiveness to isoproterenol, but the deficit resolved shortly after birth. Terbutaline selectively promoted the ability of isoproterenol to stimulate lung adenylate cyclase in the first few days after birth, without alterations in basal adenylate cyclase; this was followed by a period of prolonged subsensitivity of both basal and isoproterenol-stimulated activity. Although dexamethasone and terbutaline also caused significant changes in development of beta-receptor binding capabilities, in neither tissue could these effects account for the direction or magnitude of the changes in adenylate cyclase reactivity. Thus, glucocorticoids and beta-agonists can participate in the programming of development of postsynaptic reactivity by exerting actions upon post-receptor coupling mechanisms.  相似文献   

16.
17.
18.
19.
Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish   总被引:1,自引:0,他引:1  
Sex-change is an intriguing phenomenon that is common among certain groups of teleost fishes. The process itself has a number of independent origins, although in each case it is initiated and (or) regulated by gonadal steroids. Despite the commercial importance of sex-change technology to fish culturists, our understanding of the relationship between steroids and sex-change is, at best, rudimentary. In this paper I review the current state of knowledge concerning (a) which steroids are involved, (b) how such steroids mediate sex-change, and (c) how steroidogenesis is regulated during gonadal transition. I conclude that the steroidal endocrinology of sex-change is multifarious and species specific – a result which challenges the relative stability of vertebrate endocrine axes, but one which probably reflects the independent evolution of this adaptation.  相似文献   

20.
Although 2-arylbenzofuran phytoalexins are known for decades, their anticancer activity has not been studied systematically. We have previously reported on the isolation and the estrogen receptor (ER) modulation properties of three new 2-arylbenzofurans from Onobrychis ebenoides, ebenfuran I [2-(2,4-dihydroxyphenyl)-5-hydroxy-6-methoxy-benzofuran], ebenfuran II [2-(2,4-dihydroxyphenyl)-3-formyl-4-hydroxy-6-methoxy-benzofuran] and ebenfuran III [2-(2,4-dihydroxyphenyl)-3-formyl-4-hydroxy-6-methoxy-5-(3-methyl-buten-2-yl)-benzofuran]. We now show that, while I and II could stimulate the proliferation of MCF-7 cells, III was inhibitory in a proliferation-dependent manner. III inhibited the growth of all human cancer cells examined, regardless of ER or multidrug resistance status. Estradiol rendered MCF-7 cells more sensitive to III, and this coincided with the ability of the hormone at concentrations ≥0.1 nM to bind to the ER of the cells and stimulate their proliferation in the presence of III. Cell proliferation stimulating concentrations of I and II also enhanced the effect of III on MCF-7 cells. However, dehydroepiandrosterone and dihydrotestosterone were ineffective in this respect. III-treated MCF-7 cells exhibited G1 phase arrest followed by detachment-induced cell death and/or apoptosis in the adherent fraction, pronounced induction of Bax and suppression of estradiol induction of Bcl-2. Our data indicate that the largely unexplored pool of benzofuran phytoalexins includes entities potentially suitable for chemoprevention and treatment of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号