首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of castration and androgen-replacement on adrenergic receptors in membranes from the rat seminal vesicle were studied. Membranes from seminal vesicles showed saturable and high-affinity binding sites for the beta-adrenergic receptor antagonist, [3H]dihydroalprenolol ([3H]DHA), and the alpha 1-adrenergic receptor antagonist, [3H]prazosin. Castration markedly reduced beta-adrenergic receptors with decreasing the effect of GTP modulating the receptor-ligand affinity, suggesting defects in both the receptor per se and the guanine-nucleotides-regulating mechanism after castration. In contrast, castration increased alpha 1-adrenergic receptors and androgen-replacement reversed this change. The effects of GTP decreasing the alpha 1-receptor binding affinity to the radioligand were observed to a similar extent in the castrated and control membranes. These results demonstrate an inverse regulation by androgen on beta- and alpha 1-adrenergic receptors in membranes of the rat seminal vesicle.  相似文献   

2.
B Klangkalya  A Chan 《Life sciences》1988,42(23):2307-2314
The in vitro and in vivo effects of estrogen and progesterone on muscarinic and beta-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for beta-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, [3H]-dihydroalprenolol, to beta-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, [3H]-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor (IC50 = 37 microM, apparent Ki = 13 microM). Progesterone was found to decrease the apparent affinity of muscarinic receptors for [3H](-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate (4 micrograms) or progesterone (2.5 mg) for 4 days had no effect on the muscarinic or beta-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of beta-adrenergic receptors. The results of this study demonstrate that progestins are capable of interacting with the cardiac muscarinic receptors in vitro, and indicate that estrogen and progesterone have a synergistic effect to increase the receptor densities of muscarinic and beta-adrenergic receptors as well as to cause a decrease in the binding affinity of beta-adrenergic receptors in vivo.  相似文献   

3.
Ontogeny of alpha 1- and beta-adrenergic receptors in rat lung   总被引:2,自引:0,他引:2  
The binding characteristics of the alpha 1-selective adrenergic ligand [3H]-prazosin were determined in particulate membranes of rat lung from day 18 of gestation to adulthood. Specific binding was present at all ages studied, was reversible and inhibition of specific binding by agonists followed the order of potency: (-)-epinephrine = (-)-norepinephrine much greater than (-)-isoproterenol greater than (+)-norepinephrine. Inhibition by antagonists followed the order of potency: prazosin greater than WB4101, much greater than yohimbine. Binding capacity increased during the neonatal period from 52 +/- 9 fmoles x mg-1 protein in lung preparations on day 18 of a 21 day gestation increasing to 105 +/- 4 fmoles x mg-1 protein (mean +/- SE) by postnatal day 15. Binding activity decreased thereafter, reaching adult levels by 28 days of postnatal age, 62 +/- 3 fmoles x mg-1 protein. This pattern of alpha 1-adrenergic receptor density was distinct from that of beta-adrenergic receptors identified in rat lung membrane with the beta- adrenergic antagonist, (-)-[3H]dihydroalprenolol ((-)-[3H]DHA). (-)-[3H]DHA binding increased dramatically during this same time period, from 46 +/- 4 fmoles x mg-1 protein on day 18 of gestation to 496 +/- 44 fmoles x mg-1 protein in the adult lung. Affinity for [3H]-prazosin and (-)-[3H]DHA did not change with age. Pulmonary alpha 1-adrenergic receptors are present as early as 18 days of gestation in the rat and alpha 1-adrenergic receptor density is maximal by 15 days of postnatal age. The timing of the changes in alpha 1-adrenergic receptors correlates with the timing of increased sympathetic innervation of the developing rat lung and is distinct from that of beta-adrenergic receptor sites.  相似文献   

4.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

5.
Binding of [3H]dihydroergokryptine and [3H]dihydroalprenolol to membrane preparations from rat submaxillary gland was measured to characterize the alpha- and beta-adrenergic receptors, respectively. Kinetic analysis of the data revealed a high affinity binding site for each radioligand. Inhibition of binding at each site was stereospecific for the active isomer of the catecholamine used. The greater ability of a beta1 than beta2 specific beta-adrenergic antagonist to displace [3H]dihydroalprenolol binding indicated that this binding site was of the beta1 type. Chemical sympathectomy with reserpine or 6-hydroxydopamine resulted in a significant increase in both [3H]dihydroalprenolol and [3H]dihydroergokryptine binding in the rat submaxillary gland. 3scatchard analysis of the data indicated that these increases in binding were due to a change in total number of binding sites for [3H]dihydroergokryptine and [3H]dihydroalprenolol with little change in apparent affinities. This suggests that changes in alpha- and beta-adrenergic receptor density may be important in the development of supersensitivity in salivary glands after reserpine and 6-hydroxydopamine treatment.  相似文献   

6.
Adrenergic control of human fat cell lipolysis is mediated by two kinds of receptor sites that are simultaneously stimulated by physiological amines. To establish a correlation between the binding characteristics of the receptor and biological functions, the ability of physiological amines to stimulate or inhibit isolated fat cell lipolysis in vitro was compared to the beta- and alpha 2-adrenoceptor properties of the same fat cell batch. The beta-selective antagonist (-)[3H]dihydroalprenolol ([3H]DHA) and the alpha 2-selective antagonists [3H]yohimbine ([3H]YOH) and [3H]rauwolscine ([3H]RAU) were used to identify and characterize the two receptor sites. Binding of each ligand was rapid, saturable, and specific. The results demonstrate 1) the weaker lipolytic effect of epinephrine compared with norepinephrine. This can be explained by the equipotency of the amines at the beta 1-sites and the higher affinity of epinephrine for alpha 2-adrenergic receptors. 2) The preponderance of alpha 2-adrenergic receptor sites labeled by [3H]YOH (Bmax, 586 +/- 95 fmol/mg protein; KD, 2.7 +/- 0.2 nM) or [3H]RAU (Bmax, 580 +/- 100 fmol/mg protein; KD, 3.7 +/- 0.1 nM). These two ligands can be successfully used to label alpha 2-adrenergic receptor sites. 3) The beta 1-adrenergic receptor population labeled by [3H]DHA(Bmax, 234 +/- 37 fmol/mg protein; KD, 1.8 +/- 0.4 nM), although a third as numerous as the alpha 2-adrenergic population, is responsible for the lipolytic effect of physiological amines and is weakly counteracted by simultaneous alpha 2-adrenergic receptor stimulation under our experimental conditions. It is concluded that, in human fat cells, the characterization of beta 1- and alpha 2-adrenergic receptors by saturation studies or kinetic analysis to determine affinity (KD) and maximal number of binding sites (Bmax) is not sufficient for an accurate characterization of the functional adrenergic receptors involved in the observed biological effect.  相似文献   

7.
Human myocardial beta-adrenergic receptors were directly identified and characterized using the high affinity antagonist radioligand [125I]iodocyanopindolol. Beta 1 and beta 2 adrenergic receptors were found to coexist in both the left ventricle and right atrium. The relative proportions of the two receptor subtypes were determined by the use of competition radioligand binding and computer modelling techniques employing the subtype selective agents atenolol (beta 1 selective) and zinterol (beta 2 selective). The left ventricle contains 86 +/- 1% beta 1 and 14 +/- 1% beta 2 adrenergic receptors while the right atrium contains 74 +/- 6% beta 1 and 26 +/- 6% beta 2 adrenergic receptors. The direct demonstration of beta 2 adrenergic receptors in the human heart, with a higher proportion in the right atrium agrees with pharmacologic data and supports the notion that chronotropic effects of adrenergic agonists in man may be mediated by both beta 1 and beta 2 adrenergic receptors.  相似文献   

8.
Rabbit myometrium contains postsynaptic alpha-1, alpha-2, and beta-2 adrenoreceptors. The response to endogenous catecholamines depends on the summation of interactions at these receptors and is influenced by the hormonal environment. Estrogen treatment of ovariectomized rabbits increases the alpha adrenergic contractile response whereas progesterone treatment of estrogen primed animals results in a predominance of the beta adrenergic response, which is inhibition of contractions. Of the receptor subtypes, only the alpha-2 receptor concentration is increased at physiological estrogen concentrations. However, alpha-2 receptors have not been shown to be directly involved in myometrial contraction, which appears to be mediated solely by alpha-1 adrenergic interactions. To test whether alpha-2 receptors might indirectly affect contraction by opposing interactions at the beta receptor, we examined the ability of alpha adrenergic stimulation to reduce myometrial cyclic adenosine 3',5'-monophosphate (cAMP) generation. We find that alpha-2 receptors inhibit myometrial ade adenylate cyclase through the guanine nucleotide regulatory protein, Gi. In addition, we find that activation of alpha-1 receptors also reduces cAMP generation. This interaction, which can be demonstrated in the absence but not the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, does not appear to be mediated through Gi. These findings illustrate the complexity of adrenergic interactions in tissues containing several adrenergic subtypes.  相似文献   

9.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

10.
Hepatocytes from regenerating rat liver show an enhanced epinephrine-sensitive adenylate cyclase activity and cAMP response, which may be involved in triggering of the cell proliferation. We have determined adrenergic receptors and adenylate cyclase activity in hepatocytes isolated at various time points after partial hepatectomy. The number of beta-adrenergic receptors, measured by binding of [125I]iodocyanopindolol ([125I]CYP) to a particulate fraction prepared from isolated hepatocytes, increased rapidly after partial hepatectomy as compared with sham-operated or untreated controls. The maximal increase, which was observed at 48 h, was between 5- and 6-fold (from approximately 1 800 to approximately 10 500 sites per cell). Thereafter, the number of beta-adrenergic receptors decreased gradually. Competition experiments indicated beta 2-type receptors. Parallelism was found between the change in the number of beta 2-adrenergic receptors and the isoproterenol-responsive adenylate cyclase activity. The number of alpha 1-adrenergic receptors, determined by binding of [3H]prazosin, was transiently lowered by about 35% at 18-24 h, with no significant change in Kd. Although the results of this study do not exclude the possibility of post-receptor events, they suggest that the increased number of beta 2-adrenergic receptors is a major factor responsible for the enhanced catecholamine-responsive adenylate cyclase activity in regenerating liver.  相似文献   

11.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

12.
Poly(A)+-selected RNA prepared from cells or tissues that express a homogeneous population of either beta 1- or beta 2-adrenergic receptors was isolated and then microinjected into Xenopus laevis oocytes. Following microinjection, the expression of beta-adrenergic receptors was assessed by equilibrium radioligand binding analysis using the antagonist ligand [3H]dihydroalprenolol. The pharmacology of the newly- expressed beta-adrenergic receptors in oocyte membranes was the same as that of the original tissue used as a source of RNA. Hybridization of nick-translated cDNA of hamster beta 2-adrenergic receptor to poly(A)+-selected RNA from tissues containing beta 2-adrenergic receptors was to a mRNA species of 2.2 kilobases. In contrast, hybridization of the cDNA probe to poly(A)+-selected RNA from tissues containing beta 1-adrenergic receptors was to a mRNA species of 2.0 kilobases. A single-stranded fragment of hamster beta 2-adrenergic receptor cDNA corresponding to nucleotides 730-886 was isolated and uniformly radiolabeled. This region of the gene is predicted to encode for the entire second exofacial loop (L4-5), the entire fifth transmembrane-spanning region, and the first 5 amino acid residues of the third cytoplasmic loop (L5-6) of the beta 2-adrenergic receptor. Hybridization at 48 and 56 degrees C of poly(A)+-selected RNA prepared from sources that express either beta 1 or beta 2-adrenergic receptors to the antisense orientation strand of this region of the beta 2-adrenergic receptor cDNA was followed by S1 endonuclease digestion of nonhybridized sequences. At 48 degrees C, S1-resistant hybrids from both sources of RNA protected the probe from S1 endonuclease digestion. At 56 degrees C, however, only the RNA prepared from the source of beta 2-adrenergic receptors protected the probe from S1 endonuclease digestion. These results demonstrate that the mRNAs encoding for the structurally homologous beta 1- and beta 2-adrenergic receptors are distinct in the pharmacological specificity of their translation products and in their size and structure.  相似文献   

13.
A latent, as well as an expressed form of adenylate cyclase coupled to beta-adrenergic receptors is present in intact crude synaptosomal preparations from bovine cerebellum. The latent adenylate cyclase activity was assayed in Krebs-Ringer buffer by [3H]adenine labeling and was found to be coupled to a beta 1-like adrenergic receptor. The externally accessible adenylate cyclase assayed in the same medium with [3H]ATP was stimulated via beta 2-adrenergic receptors.  相似文献   

14.
A direct radioligand binding technique utilizing a beta-adrenergic antagonist [3H]Dihydroalprenolol [( 3H]DHA) was employed in the identification and characterization of fetal palatal beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax 16 fmol/mg protein) with high affinity and an apparent equilibrium dissociation constant (KD) of 1.5 nM. Binding of [3H]DHA was displaced by the competitive beta-adrenergic antagonist propranolol in a concentration-dependent manner. Dissociation kinetic studies demonstrated almost complete reversibility of radioligand binding within 60 min. The functionality of these beta-adrenergic receptors was demonstrated by showing that fetal palatal mesenchymal cells responded to catecholamine agonists with dose-dependent accumulations of intracellular cAMP. This effect could be entirely blocked by the beta-antagonist, propranolol. The relative potency order of catecholamines in eliciting an elevation of cellular cAMP was characteristic of a beta 2-adrenergic receptor-mediated response: (-) isoproterenol greater than (-) epinephrine greater than (-) norepinephrine. In addition, this response was found to be stereospecific with (-) isoproterenol being significantly more potent than (+) isoproterenol. Both the [3H]DHA binding characteristics and the catecholamine sensitivity of fetal palatal tissue support the presence of adenylate cyclase-coupled beta-adrenergic receptors in the developing mammalian secondary palate.  相似文献   

15.
The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. [3H]Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, [3H]Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.  相似文献   

16.
Treatment of isolated hepatocytes with the tumor-promoting agent, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and dose-dependent, non-competitive inhibition of alpha 1-adrenergic responses, including the activation of phosphorylase, increase in Ca2+ efflux, increase in free cytosolic Ca2+, and release of myo-inositol-1,4,5-P3. The actions of [8-arginine] vasopressin (AVP) on liver cells were also inhibited by PMA, but the inhibition could be overcome by high AVP concentrations. No significant inhibition of beta-adrenergic and glucagon-mediated activation of phosphorylase was induced by PMA and no inhibitory or synergistic effects of PMA were observed on the dose-dependent activation of phosphorylase by the Ca2+ ionophore A23187. In radioligand binding studies, PMA did not directly interfere with [3H]prazosin specific binding, the displacement of [3H]prazosin by (-)-norepinephrine nor with [3H]AVP specific binding to purified liver plasma membranes. Plasma membranes prepared from livers perfused with PMA exhibited a 30-44% reduction in [3H]prazosin binding capacity. Under identical conditions [3H]AVP binding was unchanged. The alpha 1-receptors remaining in membranes from PMA-treated livers had equivalent affinities for [3H]prazosin and (-)-norepinephrine, and were unaffected in terms of coupling to guanine nucleotide-regulating proteins as indicated by the ability of guanosine 5'-(beta, gamma-imido)triphosphate to promote the conversion of the remaining alpha 1-receptors into a low affinity state. These data indicate that tumor promoters are potent antagonists of alpha 1-adrenergic and vasopressin (low dose) responses in liver. It is proposed that PMA acting via protein kinase C (which presumably mediates the action of PMA) exerts its inhibitory action on alpha 1-adrenergic responses at the alpha 1-adrenergic receptor itself and also at a site close to or before myo-inositol-1,4,5-P3 release.  相似文献   

17.
The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). beta 2-adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of beta 2-adrenergic receptors on cultured rat ASMC and that these receptors are functional. beta-adrenergic receptor binding was measured using [3H]-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC beta-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a beta 2-adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. beta-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed beta-adrenergic receptor differences can be further explored.  相似文献   

18.
The stimulations of cyclic AMP formation and adenylate cyclase activity by glucagon and isoproterenol were both found to be highest in neonatal rat hepatocytes and to decrease during development. Adult hepatocytes still showed a considerable response to glucagon, but a negligible response to isoproterenol. The decrease in cyclic AMP formation during development can be explained in the case of the response to beta-adrenergic agonist as due to decrease of its receptor number, judging from binding of [125I]iodocyanopindolol to purified plasma membranes. But in the case of the glucagon response, the decrease in the response may be due to change of post-receptor components of the adenylate cyclase system, because the receptor number tended to increase during development, as shown by binding of [125I]iodoglucagon. Similarly, alpha 1-adrenergic receptors increased in number during development, but their IC50 value did not change, as measured by binding of [3H]prazosin to plasma membranes. Previous studies on primary cultures of adult rat hepatocytes showed that the beta-adrenergic response and its receptor number increased markedly during short-term culture (Nakamura, T., Tomomura, A., Noda, C., Shimoji, M., & Ichihara, A. (1983) J. Biol. Chem. 258, 9283-9289). However, in this work the amount of alpha 1-adrenergic receptor of adult rat hepatocytes was found to decrease by one third during 1-2 days culture. Therefore, changes of alpha 1- and beta-adrenergic receptors during development of rat liver and during primary culture of adult rat hepatocytes were reciprocal, although the directions of change in the two conditions were opposite. The additions of various hormones to primary cultures of adult rat hepatocytes did not affect the reciprocal changes of adrenergic receptors, suggesting that these hormones did not regulate the changes of the receptors.  相似文献   

19.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号