首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synergistic interaction between pectin and chitosan in aqueous acid solution and in the gel phase has been studied by oscillatory shear measurements. Mixtures of pectin and chitosan form thermoreversible gels over a broad composition range by lowering the temperature. The value of the gelation temperature depends on the composition of the mixture, with low values for mixtures with low pectin contents. For incipient gels, a power law can describe the frequency dependence of the complex viscosity, with power law exponents close to -1. The gel evolution of pectin-chitosan mixtures upon a temperature quench below the gel point has been studied. Evidence is provided for a relation between gelation and phase separation in the process of temperature-induced gelation of pectin-chitosan mixtures. A simple model is proposed to rationalize the gelation process in these systems.  相似文献   

2.
The sol–gel transition in aqueous alginate solutions of four alginate samples having different molecular weights (MW) and M/G ratios induced by cupric cations was monitored by rheology measurements. The gel point fgel and the relaxation critical exponent n were determined using the Winter’s criterion over the alginate concentration CAlg of 1–4 wt%. The scaling for the zero shear viscosity η0 before the gel point and the equilibrium modulus Ge after the gel point was established against the relative distance ε from the gel point at the concentration of CAlg = 1 wt%, giving the critical exponents k and z. The results indicated that fgel was almost independent of the alginate concentration and became higher for the sample with lower molecular weight. The critical exponent n decreased with the increase in CAlg for these four Cu-alginate samples and the fractal dimension df estimated from n suggested a denser structure in the critical gel with high G content. The critical exponent n evaluated from k and z agreed well with n determined from the Winter’s criterion.  相似文献   

3.
In this study, the influence of the presence of low-methoxyl pectin (LM pectin) on the rheological and microstructural properties of microfibrillated cellulose suspensions was elucidated in order to create new structures with new and interesting textures. For that purpose, the rheological properties of the cellulose/LM pectin mixtures in variable proportions were compared with those of the individual biopolymers. The influence of the presence of calcium and/or sodium ions on the properties of the mixed systems was studied. The microstructure of the resulting system was studied by transmission electron microscopy and confocal laser scanning microscopy. It was found that, in the presence of LM pectin, a synergistic effect was observed when calcium ions were also present, leading to increased rheological properties of the composites. Indeed, addition of calcium to the mixtures induced LM pectin gelation, which was favoured in the presence of sodium, the pectin network contributing to the formation of a stronger cellulose/LM pectin composite gel. The presence of LM pectin alone in the microfibrillated cellulose suspensions does not significantly modify the viscoelastic and microstructural properties of microfibrillated cellulose suspensions. Whether calcium was added to the mixtures or not in water, the viscoelastic properties of the mixtures are mainly controlled by cellulose. The same behaviour was observed for the mixtures in NaCl without added calcium. Contrary to this observation, it was noticed that in presence of both sodium and calcium ions, the viscoelastic properties of the mixtures are largely governed by LM pectin. On the other hand, it was showed that the flow behaviour of microfibrillated cellulose suspensions is modified in the presence of LM pectin with an increase in thixotropic character shear-thinning behaviour, which was more pronounced in the presence of NaCl. It was also shown, from TEM observations, that an interpenetrating network formed in cellulose/LM pectin composites gel in the presence of calcium ions. In the same way, the CLSM observations allowed the separate localization of cellulose and LM pectin within the composite systems to be highlighted. The results obtained suggests that it is possible to thus create new structures with new interesting textures, by mixing microfibrillated cellulose suspensions and LM pectin in suitable proportions in the simultaneous presence of both sodium and calcium ions.  相似文献   

4.
The chemical structure and the rheological behavior of the Klebsiella polysaccharide ATCC 12657 was studied and compared with data described in the literature and obtained for similar polysaccharides. The acetylated polysaccharide presents in solution a normal viscoelastic behavior with no evidence of an ordered conformation whatever the experimental conditions are. The deacetylated form can induce the formation of physical gels, in the presence of salt excess or ethanol. Microcalorimetry, optical rotation, and rheology experiments demonstrate that a thermally reversible and highly cooperative conformational transition occurs at the same temperature than a sol-gel transition. The melting of the gel and the conformational transition temperatures are dependent on the nature of cations and ionic concentration, whereas the gel strength is only influenced by polymer concentration.  相似文献   

5.
Our previous study demonstrated that mixtures of tamarind seed xyloglucan (TSX) with appropriate concentrations of eriochrome black T (EBT) produced a gel that could be of benefit for medical use. Here, the sol-gel systems of various fresh and aged mixtures were further investigated using rheological measurements. The nanostructural changes of EBT-TSX sol-gel phases were analyzed using SAXS. The interactions between EBT and TSX in the sol and gel states were examined using ATR-FTIR. SAXS data analysis demonstrated that the mixture containing lower concentration of EBT formed rod-like structures and that with higher concentrations of EBT produced flat particles. The sizes of the TSX structures from the aged mixtures in the gel stage were larger than those from the same mixtures in the sol state. ATR-FTIR spectral changes revealed that the azo and sulfonic acid groups of EBT interacted with the TSX, and the characteristic spectrum of the sulfonic acid group of EBT could discriminate between the sol and gel state of the EBT-TSX systems. The interactions between EBT and TSX may cause conformational changes to TSX and facilitate the sol-gel transition or formation of a gel.  相似文献   

6.
Rheological and DSC techniques were used to study the effect of κ-carrageenan and KCl concentrations, 0–300 mM, on the sol–gel transition as well as on the linear viscoelasticity, at 25 °C, of the resulting gels. In heating and cooling DSC tests, the peak temperature was taken as the sol–gel transition point. In rheological tests, sol–gel transitions were determined from the variation of dynamic moduli with frequency and temperature, the independence of the phase angle on frequency and the evolution with temperature of dynamic moduli on cooling and heating at constant frequency and strain. Transition temperatures from DSC and rheology were in good agreement among them and with those previously reported. The three procedures yielded similar results, but the transition temperatures were more easily determined through the independence of the phase angle on frequency. Frequency sweeps showed gel behavior with stiffness increasing with polysaccharide and salt concentration. Below 100 mM KCl, G′ increased notably, whereas higher concentrations produced only marginal increases.  相似文献   

7.
Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel in acidic conditions, with the transition occurring near pH 4. In addition to pH-dependent gelation behavior in this system, further rheological studies under nonlinear deformations reveal shear thinning and an apparent yield stress in this material which are also highly influenced by pH.  相似文献   

8.
Turbidity, swelling, and rheological features of semidilute systems of pectin in methanol-water media of different composition have been investigated. By increasing the percentage of methanol in the mixture, the thermodynamic properties of the pectin/methanol/water system become poorer, as shown by increasing turbidity and decreasing swelling. Effects of oscillatory and steady shear flows on intermolecular associations and gelation of pectin in methanol/water mixtures are reported. The effects of methanol concentration on the growth and structure of shear-induced gels, stabilized through hydrogen bonds, are analyzed. Steady shear measurements on these systems reveal shear thickening at low shear rates and disruption of intermolecular associative junctions at high shear rates.  相似文献   

9.
The microstructure and the rheological properties of pure HM (high methoxyl) and LM (low methoxyl) pectin gels and of mixed HM/LM pectin gels have been investigated. Gel formation of either the HM or LM pectin, or both, was initiated in the mixed gels by varying the sucrose and Ca(2+) content. The microstructure was characterized by transmission electron microscopy, light microscopy, and confocal laser scanning microscopy. HM and LM pectin gels showed aggregated networks with large pores around 500 nm and network strands of similar character. Small differences could be found, such as a more inhomogeneous LM pectin network with shorter and more branched strands of flexible appearance. LM pectin also formed a weak gel in 60% sucrose in the absence of calcium. A highly inhomogeneous mixed gel structure was formed in the presence of 60% sucrose and Ca(2+) ions, which showed large synergistic effects in rheological properties. Its formation was explained by the behavior of the corresponding pure gels. In the presence of 60% sucrose alone, a homogeneous, fine-stranded mixed network was formed, which showed weak synergistic effects. It is suggested that LM pectin interacts with HM pectin during gel formation, thereby hindering secondary aggregation leading to the aggregated networks observed for the pure gels.  相似文献   

10.
The kinetic behavior during gel formation and the microstructure of 0.75% high methoxyl (HM) pectin gels in 60% sucrose have been investigated by oscillatory measurements and transmission electron microscopy for three comparable citrus pectin samples differing in their degree of blockiness (DB). Ca2+ addition at pH 3.0 resulted in faster gel formation and a lower storage modulus after 3 h for gels of the blockwise pectin A. For gels of the randomly esterified pectin B, the Ca2+ addition resulted in faster gel formation and a higher storage modulus at pH 3.0. At pH 3.5, both pectins A and B were reinforced by the addition of Ca2+. In the absence of Ca2+, the shortest gelation time was obtained for the sample with the highest DB. Microstructural characterization of the gel network, 4 and 20 h after gel preparation, showed no visible changes on a nanometer scale. The microstructure of pectins A and B without Ca2+ was similar, whereas the presence of Ca2+ in pectin A resulted in an inhomogeneous structure.  相似文献   

11.
The ageing process of high methoxyl pectin (HMP)/sucrose gels was followed at different ageing temperatures by small amplitude oscillatory experiments. Dynamic mechanical measurements allowed the characterisation of the point at which the system undergoes the sol/gel transition. The HMP/sucrose system is extremely sensitive to temperature variation during ageing, especially in the lower temperature range. The viscoelastic behaviour through the gel point changes with the ageing temperature, probably due to variations in mobility of the pectin chains, and consequently, in the lifetime of junction zones. Weaker pectin networks are formed under thermal conditions unfavourable to the development of hydrophobic interactions. Gel time and elastic modulus have a complex dependence on temperature, which could be attributed to the different thermal behaviour of the intermolecular interactions that stabilise the nonpermanent cross links of these physical networks.  相似文献   

12.
It is shown that under certain circumstances, on cooling mixed ι- and κ-carrageenan solutions, the two forms gel separately at different temperatures, with the ι form gelling first. This ‘two-step gelation’ was only observed when both sodium and potassium ions were present, with a sodium/potassium mole ratio of between 1 and 100. For such mixed gels, a κ fraction as low as 2·5% of the total carrageenan has significant effects on their rheology, both at low deformation and fracture. In these systems, the κ form, gelling in the presence of an existing ι gel, produces measurable rheological effects at much lower concentrations than if it were alone. This behaviour can be used as a sensitive test of the ‘rheological purity’ of samples of ι-carrageenan.  相似文献   

13.
The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presence of Ca(2+) by oscillatory measurements and transmission electron microscopy (TEM). The appearance of the gel microstructure varied with the pH, the gel structure being sparse and aggregated at pH 3 but dense and somewhat entangled at pH 7. During gel formation of pectins G and C30 at pH 3 there was a rapid increase in G' initially followed by a small increase with time. At pH 7 G' increased very rapidly at first but then remained constant. The presence of sucrose influenced neither the kinetic behavior nor the microstructure of the gels but strongly increased the storage modulus. Pectins G and C30 showed large variations in G' at pH values 3, 4, 5, and 7 in the presence of sucrose, and the maximum in G' in the samples occurred at different pH values. Due to its high Ca(2+) sensitivity, pectin sG had a storage modulus that was about 50 times higher than that of its mother pectin G at pH 7.  相似文献   

14.
Song H  Niu Y  Wang Z  Zhang J 《Biomacromolecules》2011,12(4):1087-1096
Liquid crystalline (LC) phase transition and gel-sol transition in the solutions of microcrystalline cellulose (MCC) and ionic liquid (1-ethyl-3-methylimidazolium acetate, EMIMAc) have been investigated through a combination of polarized optical microscope (POM) observation and rheological measurements. Molecular LC phase forms at the 10 wt % cellulose concentration, as observed by POM, whereas the critical gel point is 12.5 wt % by rheological measurements according to the Winter and Chambon theory, for which the loss tangent, tan δ, shows frequency independence. Dramatic decreases of G' and G' in the phase transition temperature range during temperature sweep are observed due to disassembling of the LC domain junctions. The phase diagram describing the LC phase and gel-sol transitions is obtained and the associated mechanisms are elucidated. A significant feature shown in the phase diagram is the presence of a narrow lyotropic LC solution region, which potentially has a great importance for the cellulose fiber wet spinning.  相似文献   

15.
Influence of low-methoxyl pectin (LM pectin) and calcium ions (3 mM) on mechanical behavior and microstructure of bovine serum albumin (BSA) gels (pH 6.8, in 0.1 M NaCl) was evaluated. Protein and LM pectin concentrations were fixed at 2, 4, and 8 wt % and 0.21, 0.43, and 0.85 wt %, respectively. Rheological measurements and confocal laser scanning microscopy coupled with texture image analysis by use of the co-occurrence method were performed. Heat treatment of BSA/LM pectin mixtures induced protein gelation and a phase separation process between the two biopolymers, which was kinetically trapped. Calcium ions induced pectin gelation and modified BSA gel properties. Depending on biopolymer concentrations, a balance between pectin and/or protein gel contribution on final gel strength exists. The microstructures of the mixed systems in the presence of calcium can be interpreted as interpenetrated structures. Texture image analysis allowed one to classify more precisely the different microstructures observed in relation with mechanical properties.  相似文献   

16.
Effect of Na+, K+ and Ca2+ on gel transition temperature (Tg) of gelatin hydrogels (5%, w/v) has been studied by oscillatory rheology in the salt concentration range I = 0.01-0.1 M, which showed increase in Tg with salt concentration with the trend for Tg showing Ca2+ > K+ > Na+. The dynamic light scattering (DLS) measurements in the sol state (T>Tg) showed two distinct relaxation modes whereas only a gel mode was observed in the gel state in all the samples which contained significant amount of heterodyne contribution. Low frequency (1.5 rad/s) isochronal storage modulus data revealed the formation of strong gel in presence of CaCl2 compared to that of NaCl and KCl situations. The slow mode relaxation and heterodyne parameter obtained from DLS data indicate the presence of larger clusters in Ca2+ gels.  相似文献   

17.
The dynamic surface elasticity and the surface dilational viscosity of three binary phospholipid/cholesterol mixtures were determined with axisymmetric drop shape analysis on a harmonically oscillating pendent drop. Dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine were used to explore the rheological properties and phase transitions of mixtures of saturated and unsaturated phospholipids with cholesterol. The growth rates for surface dilational viscosity and dynamic elasticity are parallel for all film pressures studied. Characteristic breaks and plateaus could be found for these growth rates, indicating phase transitions. For dipalmitoylphosphatidylcholine/cholesterol and dimyristoylphosphatidylcholine/cholesterol mixtures, phase diagrams with six regions separated by phase boundaries were found, which are in good agreement with phase transitions reported in the literature for static measurements of isotherms and isobars on a Langmuir film balance and from fluorescence microscopy. Some phase boundaries were only found by dynamic, but not by static, elasticity measurements. Imaging methods revealed phase separations produced by the formation of condensed stoichiometric complexes leading to micron-sized and mostly circular domains. The effects of these complexes on monolayer rheology in liquid/liquid phases is described. Furthermore, liquid/solid and solid phase transitions are discussed.  相似文献   

18.
Binding interactions between low molecular weight heparin (LMWH) and heparin-binding peptides (HBP) have been applied as a strategy for the assembly of hydrogels that are capable of sequestering growth factors and delivering them in a controlled manner. In this work, the assembly of four-arm star poly(ethylene glycol) (PEG)-LMWH conjugate with PEG-HBP conjugates has been investigated. The interactions between LMWH and the heparin-binding regions of antithrombin III (ATIII) or the heparin interacting protein (HIP) have been characterized via heparin affinity chromatography and surface plasmon resonance (SPR); results indicate that the two peptides have slightly different affinities for heparin and LMWH, and bind LMWH with micromolar affinity. Solutions of the PEG-LMWH and of mixtures of the PEG-LMWH and PEG-HBP were characterized via both bulk rheology and laser tweezer microrheology. Interestingly, solutions of PEG-LMWH (2.5 wt % in PBS) form hydrogels in the absence of PEG-ATIII or PEG-HIP, with storage moduli, determined via bulk rheological measurements, in excess of the loss moduli over frequencies of 0.1-100 Hz. The addition of PEG-ATIII or PEG-HIP increases the moduli in direct proportion to the number of cross-links introduced. Characterization of the hydrogels via microrheology shows the gel microstructure is composed of polymer-rich fibrillar structures surrounded by polymer-depleted buffer. Potential applications of these hydrogels are discussed.  相似文献   

19.
The effect of gel-sol transition in kappa-carrageenan systems on the microviscosity of hydrophobic microdomains, as well as its relation to macroscopic rheology and molecular conformation, was studied in kappa-carrageenan systems. The microdomains were probed by 1,3-di(-1-pyrenyl)propane (P3P) for which the excimer intensity (Ie) provides relative measures of the microviscosity in the immediate probe surroundings. In particular the applicability of P3P to monitor the gel--sol transition was proved, the results showing a dramatic decrease in microviscosity in the vicinity of the transition point. The corresponding changes in rheological properties and carrageenan conformation were investigated by dynamic viscometry (DV) and optical rotation (OR), respectively. The temperature of onset of the transition as indicated by the microviscosity data (T0) was found to correlate well with the OR and DV-results. The application of microviscosity and OR-measurements allowed an estimation of the helical content at T0 to be determined. P3P-data indicate a microenvironment viscosity for the probe sites in the kappa-carrageenan system comparable to that found in SDS micelles.  相似文献   

20.
Small deformation dynamic oscillation and bright field microscopy were used to examine the structural properties of single and mixed high methoxy pectin and gelatin systems in the presence of sucrose/glucose syrup blends. Co-solute concentrated (≥78%) systems of the polysaccharide form rubbery structures which are readily transformed into glassy consistencies according to the time-temperature superposition principle. Increasing amounts of co-solute in the gelatin samples induce changes in viscoelasticity from that of conventional hydrogels to mechanical traces that cover much of the plateau region and the beginning of the glass transition area. Furthermore, manipulation of the protein/ sugar ratio can result in strong crystalline matrices, or viscoelastic solutions where the co-solute forms the continuous phase and the gelatin inclusions can undertake a conformational transition. The properties of the single components were used to rationalise the phase behaviour of their mixtures. Upon triggering the gelation of pectin, mixtures can be made where either gelatin or both components form a continuous phase. Results are discussed in the light of evidence obtained from the ethylene glycol work in Part I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号