首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
The 3D-structure of the maltooligosaccharide-specific LamB-channel of Escherichia coli (also called maltoporin) is known from X-ray crystallography. The 3D structure suggests that a number of aromatic residues (Y6, Y41, W74, F229, W358 and W420) within the channel lumen are involved in carbohydrate and ion transport. All aromatic residues were replaced by alanine-scanning mutagenesis. Furthermore, LamB mutants were created in which two, three, four, five and all six aromatic residues were replaced to study their effects on ion and maltopentaose transport through LamB. The purified mutant proteins were reconstituted into lipid bilayer membranes and the single-channel conductance of the mutants was studied in conductance experiments. The results suggest that all aromatic residues provide some steric hindrance for ion transport through LamB. Highest impact is provided by Y6 and Y41 that are localized opposite Y118, which form the central constriction of the LamB channel. Stability constants for binding of maltopentaose to the mutant channels were measured using titration experiments with the carbohydrate. The mutation of one or several aromatic residue(s) led to a substantial decrease of the stability constant of binding. The highest effect was observed when all aromatic residues were replaced by alanine because no binding of maltopentaose could be detected in such a case. However, binding was again possible when Y118 was replaced by tryptophan. The carbohydrate-induced block of the channel function could be used also for the study of current noise through the different mutant LamB-channels. The analysis of the power density spectra of some of the mutants allowed the evaluation of the on-rate and off-rate constants (k1 and k(-1)) of carbohydrate binding to the binding site inside the channels. The results suggest that both on-rate and off-rate constants were affected by the mutations. For most mutants, k1 decreased and k(-1) increased. The possible influence of the aromatic residues of the greasy slide on carbohydrate and ion transport through LamB is discussed.  相似文献   

2.
Summary The method of the measurement of the nonelectrogenic fluxes of hydrogen (or hydroxyl) ions (J H) based on the local proton gradients formation in the unstirred layers near a bilayer lipid membrane (BLM) is applied for recording the nonelectrogenic anion/OH exchange on BLM induced by tributyltin (TBT) and a novel carrier (Hager, A., Moser, I., & Berthold, W. 1987.Z. Naturforsch.,42C1116–1120), triethyllead (TEL). This method has been used previously for measuring the cation fluxes through BLM. TBT and TEL are shown to be equally efficient in the induction of Cl/OH exchange.J H induced by TBT is constant at 4J H decreases at pH<4 and pH>7. Both ionophores have a transport sequence: I> Br>Cl>F. The quatitative measurements reveal that TEL better discriminates these four anions than TBT. It is concluded that this method may prove helpful in a search and study of anion/OH-exchangers isolated from natural membranes.  相似文献   

3.
Summary A voltage-sensitive, cation-selective ion channel ofEscherichia coli has been reconstituted into liposomes and studied with the patch-clamp method. The single channel conductance was 91 pS in symmetric solutions of 150mm KCl. Many channels were open most of the time, with frequent brief transitions to closed levels. Multiple conducting units could close and reopen simultaneously, and this apparent cooperativity in gating was increases with depolarizing voltages. Above a voltage threshold, the channels closed irreversibly, often in groups.  相似文献   

4.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   

5.
Wu Y  Voth GA 《FEBS letters》2003,552(1):23-27
The M2 ion channel is an essential component of the influenza A virus. This low-pH gated channel has a high selectivity for protons. Evidence from various experimental data has indicated that the essential structure responsible for the channel is a parallel homo-tetrameric alpha-helix bundle having a left-handed twist with each helix tilted with respect to the membrane normal. A backbone structure has been determined by solid state nuclear magnetic resonance (NMR). Though detailed structures for the side chains are not available yet, evidence has indicated that His37 and Trp41 in the alpha-helix are implicated in the local molecular structure responsible for the selectivity and channel gate. More definitive conformations for the two residues were recently suggested based on the known backbone structure and recently obtained NMR data. While two competitive proton-conductance mechanisms have been proposed, the actual proton-conductance mechanism remains an unsolved problem. Computer simulations of an excess proton in the channel and computational studies of the His37/Trp41 conformations have provided insights into these structural and mechanism issues.  相似文献   

6.
The polyanion-induced substate of the outer mitochondrial membrane was studiedin vivo andin vitro. Study of the substate in artificial bilayers showed that it is highly cation selective. The induction of the substate in intact mitochondria leads to a complete inhibition of the intermembrane kinases, such as creatine kinase and adenylate kinase, which were excluded from the external ATP pool. Peripheral kinases, such as hexokinase, were blocked when they utilized internal ATP. The results with intact mitochondria suggested the existence of two regions of the outer membrane containing channels of different states, which may be involved in the regulation of intermembrane and peripheral kinases.  相似文献   

7.
Anthrax toxin consists of three proteins (approx. 90kDa each): lethal factor (LF); oedema factor (OF); and protective antigen (PA). The former two are enzymes that act when they reach the cytosol of a targeted cell. To enter the cytosol, however, which they do after being endocytosed into an acidic vesicle compartment, they require the third component, PA. PA (or rather its proteolytically generated fragment PA63) forms at low pH a heptameric beta-barrel channel, (PA63)7, through which LF and OF are transported--a phenomenon we have demonstrated in planar phospholipid bilayers. It might appear that (PA63)7 simply forms a large hole through which LF and OF diffuse. However, LF and OF are folded proteins, much too large to fit through the approximately 15A diameter (PA63)7 beta-barrel. This paper discusses how the (PA63)7 channel both participates in the unfolding of LF and OF and functions in their translocation as a proton-protein symporter.  相似文献   

8.
Aims:  To establish the role of maltoporin (LamB) in adherence of enteropathogenic Escherichia coli (EPEC) to epithelial cells in vitro.
Methods and Results:  Three strains, wild type (WT) EPEC, a maltoporin (LamB) mutant ΔlamB , and DH5α were used to study adherence to cultured HEp-2 cells. Mutant ΔlamB was found to be deficient in adherence compared to WT EPEC. Adherence of ΔlamB was restored to wild type levels when complemented with the cloned lamB gene. The non–adherent strain DH5α also adhered to HEp-2 cells when it harboured the cloned lamB gene. The LamB protein was isolated from WT EPEC by electroelution and antibodies were raised in rabbits. The specificity of the antibodies was analysed by Western blotting. Anti-LamB antiserum reduced adherence of WT EPEC to HEp-2 cells. The LamB protein was coated on latex beads and the beads adhered to HEp-2 cells. Anti-LamB antiserum prevented bead adherence to HEp-2 cells. Multiple sequence alignment showed that the L9 loop of EPEC LamB had four amino acids different from the L9 loop of LamB from several other related pathogens.
Conclusions:  LamB serves as an alternative or additional adherence factor for EPEC.
Significance and Impact of the Study:  Adherence is an important component of the pathogenesis of noninvasive pathogens like EPEC. A putative adhesin such as LamB, which has already been found to be co-expressed with virulence factor EspB may be a potential vaccine candidate for control of EPEC and related pathogens.  相似文献   

9.
Protein P trimers isolated and purified from Pseudomonas aeruginosa outer membrane were reconstituted in planar lipid bilayer membranes from diphytanoyl phosphatidylcholine. The protein trimers formed highly anion-specific channels with an average single channel conductance of 160 pS in 0.1 M Cl solution. A variety of different nonvalent anions were found to be permeable through the channel, which suggests a channel diameter between 0.5 and 0.7 nm. The selectivity for the halides followed the Eisenman sequence AVI (without At-). The ion transport through the protein P channel could be explained reasonably well by a one-site, two-barrier model. The stability constant of the binding of Cl- to the site was 20 M-1 at neutral pH. The binding of anions to the site was pH dependent, which suggested that several charges are involved in the closely spaced selectivity filter. Permeability ratios for different anions as calculated from bi-ionic potentials showed agreement with corresponding ratios of single channel conductances. The protein P channels were not voltage-gated and had lifetimes of the order of several minutes. The current-voltage curves were linear for membrane potentials up to 150 mV, which suggested that Nernst-Planck-type barriers rather than Eyring barriers were involved in the movement of anions through the protein P channel.  相似文献   

10.
We have investigated the basic properties of a predominantly anion-selective channel derived from highly purified human platelet surface membrane. Single channels have been reconstituted into planar phospholipid bilayers by fusion of membrane vesicles and recorded under voltage-clamp conditions. The channel is found to have the following properties: (i) Channel activity occurs in bursts of openings separated by long closed periods. (ii) The current-voltage relationship is nonlinear. Channel current is seen to rectify, with less current flowing at positive than at negative voltages. Rectification may be due to asymmetric block by HEPES/Tris buffers. In 450 mM KCl, 5 mM HEPES/Tris, pH 7.2, the single channel conductance at -40 mV is approximately 160 pS and at +40 mV is approximately 90 pS. (iii) The conductance-concentration relationship follows a simple saturation curve. Half maximal conductance is achieved at a concentration of approximately 1000 mM KCl, and the curve saturates at a conductance of approximately 500 pS. (iv) Reversal potentials interpreted in terms of the Goldman-Hodgkin-Katz equation indicate a Cl: K permeability ratio of 4:1. (v) The channel accepts all of the halides as well as a number of other anions. The following sequence of relative anion permeabilities (in the presence of K+) is obtained: F- less than acetate- less than gluconate- less than Cl- less than Br- less than I- less than NO3- less tha SCN-.(vi) Cations as large as TEA+ are permeant. (vii) Current through the channel is blocked in the presence of DIDS, SITS and ATP, but not by Zn2+.  相似文献   

11.
Summary Detergent-free rat brain outer mitochondrial membranes were incorporated in planar lipid bilayers in the presence of an osmotic gradient, and studied at high (1 m KCl) and low (150 mm KCl) ionic strength solutions. By comparison, the main outer mitochondrial membrane protein, VDAC, extracted from rat liver with Triton X-100, was also studied in 150 mm KCl. In 1 m KCl, brain outer membranes gave rise to electrical patterns which resembled very closely those widely described for detergent-extracted VDAC, with transitions to several subconducting states upon increase of the potential difference, and sensitivity to polyanion. The potential dependence of the conductance of the outer membrane, however, was steeper and the extent of closure higher than that observed previously for rat brain VDAC. In 150 mm KCl, bilayers containing only one channel had a conductance of 700 ± 23 pS for rat brain outer membranes, and 890 ± 29 pS for rat liver VDAC. Use of a fast time resolution setup allowed demonstration of open-close transitions in the millisecond range, which were independent of the salt concentration and of the protein origin. We also found that a potential difference higher than approx. ± 60 mV induced an almost irreversible decrease of the single channel conductance to few percentages of the full open state and a change in the ionic selectivity. These results show that the behavior of the outer mitochondrial membrane in planar bilayers is close to that detected with the patch clamp (Moran et al., 1992, Eur. Biophys. J. 20:311–319).The neurotoxicological action of aluminum was studied in single outer membrane channels from rat brain mitochondria. We found that m concentrations of Al Cl3 and aluminum lactate decreased the conductance by about 50%, when the applied potential difference was positive relative to the side of the metal addition.The authors thank Dr. O. Moran for helpful discussions, Dr. M. Colombini for a sample of polyanion, and the Sharing Company for financial support to Dr. T. M. This work was partly supported by funds from the Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica of Italy.  相似文献   

12.
The channel-forming protein, VDAC, located in the mitochondrial outer membrane, is probably responsible for the high permeability of the outer membrane to small molecules. The ability to regulate this channelin vitro raises the possibility that VDAC may perform a regulatory rolein vivo. VDAC exists in multiple, quasi-degenerate conformations with different permeability properties. Therefore a modest input of energy can change VDAC's conformation. The ability to use a membrane potential to convert VDAC from a high (open) to a low (closed) conducting form indicates the presence of a sensor in the protein that allows it to respond to the electric field. Titration and modification experiments point to a polyvalent, positively charged sensor. Soluble, polyvalent anions such as dextran sulfate and Konig's polyanion seem to be able to interact with the sensor to induce channel closure. Thus there are multiple ways of applying a force on the sensor so as to induce a conformational change in VDAC. Perhaps cells use one or more of these methods.  相似文献   

13.
One of the major outer membrane proteins of yeast mitochondria was isolated and purified. It migrated as a single band with an apparent molecular weight of 30 kDa on a SDS-electrophoretogram. When reconstituted in lipid bilayer membranes the protein formed pores with a single channel conductance of 0.45 nS in 0.1 M KCl. The pores had the characteristics of general diffusion pores with an estimated diameter of 1.7 nm. The pore of mitochondrial outer membranes of yeast shared some similarities with the pores formed by mitochondrial and bacterial porins. The pores switched to substates at voltages higher than 20 mV. The possible role of this voltagedependence in the metabolism of mitochondria is discussed.  相似文献   

14.
S Nekolla  C Andersen    R Benz 《Biophysical journal》1994,66(5):1388-1397
LamB, a sugar-specific channel of Escherichia coli outer membrane was reconstituted into lipid bilayer membranes and the current noise was investigated using fast Fourier transformation. The current noise through the open channels had a rather small spectral density, which was a function of the inverse frequency up to about 100 Hz. The spectral density of the noise of the open LamB channels was a quadratic function of the applied voltage. Its magnitude was not correlated to the number of channels in the lipid bilayer membrane. Upon addition of sugars to the aqueous phase the current decreased in a dose-dependent manner. Simultaneously, the spectral density of the current noise increased drastically, which indicated interaction of the sugars with the binding site inside the channel. The frequency dependence of the spectral density was of Lorentzian type, although the power of its frequency dependence was not identical to -2. Analysis of the power density spectra using a previously proposed simple model (Benz, R., A. Schmid, and G. H. Vos-Scheperkeuter. 1987. J. Membr. Biol. 100: 12-29), allowed the evaluation of the on- and the off-rate constants for the maltopentaose binding to the binding site inside the LamB channels. This means also that the maltopentaose flux through the LamB channel could be estimated by assuming a simple one-site, two-barrier model for the sugar transport from the results of the noise analysis.  相似文献   

15.
16.
When turgor was increased, by decreasing the concentration of mannitol bathing discs of sugar beet storage root tissue, the rates of sucrose and potassium uptake into the vacuole were decreased. At all external mannitol concentrations the rate of sucrose and potassium uptake across the plasma membrane was an order of magnitude greater than the rate of quasi-steady uptake into the vacuole, implying a very large efflux. Efflux of both sucrose and potassium was increased at high turgor. However, while increasing turgor decreased the rate of K+ uptake, the rate of sucrose uptake at the plasma membrane increased with time. Compartmental analysis of tracer exchange kinetics was used to determine unidirectional K+ fluxes. From these results, it was estimated that the increase in K+ efflux accompanying a 1.5 MPa increase in turgor could lead to a net increase of 140mol?3h?1 in the external potassium concentration. It is suggested that the turgor-imposed increase in solute efflux is a means of regulating intracellular osmotic pressure and/or turgor in sugar beet storage roots, but that sucrose is preferentially retrieved from the apoplast, even under conditions of excessively high turgor. However, much of this sucrose is probably lost from the cell, implying a ‘futile’ sucrose transport cycle at the plasma membrane. The turgor-stimulated leak of potassium could play a major role in the regulation of turgor pressure in sugar beet storage root tissue.  相似文献   

17.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

18.
P E Klebba  M Hofnung    A Charbit 《The EMBO journal》1994,13(19):4670-4675
LamB facilitates the uptake of maltose and maltodextrins across the bacterial outer membrane and acts as a general porin for small molecules. Using directed deletion mutagenesis we removed several regions of the LamB polypeptide and identified a polypeptide loop that both constricts the maltoporin channel and binds maltodextrins. In conjunction with a second sugar binding site that we identified at the rim of the channel, these data clarify, for the first time, the mechanism of transport through a substrate-specific porin. Furthermore, unlike the transverse loops of general porins, which originate from a central location in their primary structure, the loop that regulates LamB permeability originates from a C-terminal site. Thus LamB represents a second distinct class of porins in the bacterial outer membrane that is differently organized and separately evolved from OmpF-type, general porins.  相似文献   

19.
Protein P from Pseudomonas aeruginosa outer membrane was reconstituted in lipid bilayer membranes from diphytanoylphosphatidylcholine. The reconstitution resulted in the formation of anion-selective channels with a conductance of 160 pS for 0.1 M chloride solution. The channels were at least 100-times more selective for anions than for cations as judged from zero-current membrane potentials. The single-channel conductance was dependent on the size of the different anions and saturated at higher salt concentrations suggesting single ion occupancy of the protein P channel.  相似文献   

20.
LamB, an outer membrane protein of Escherichia coli, is a component of the maltose-maltooligosaccharide transport system. We used p-nitrophenyl-alpha-D-maltohexaoside, a chromogenic analog of maltohexaose, and a periplasmic amylase that hydrolyzes this compound to study the LamB-mediated diffusion of p-nitrophenyl-alpha-D-maltohexaoside into the periplasm. Using this approach, we were able to characterize LamB in vivo as a saturable channel for maltooligosaccharides. Permeation through LamB follows Michaelis-Menten kinetics, with a Km of 0.13 mM and a Vmax of 3.3 nmol/min/10(9) cells. Previous studies suggested that maltose-binding protein increases the rate of maltooligosaccharide diffusion through LamB. We show here that, at least in strains that are unable to transport maltooligosaccharides into the cytoplasm, maltose-binding protein does not influence the rate of substrate diffusion. The periplasmic amylase had been previously described as being of the alpha-type. We have now purified this protein and analyzed its mode of action using chromogenic maltooligosaccharides of varying length. Analysis of the hydrolytic products revealed that the enzyme recognizes its substrate from the nonreducing that the enzyme recognizes its substrate from the nonreducing end and preferentially liberates maltohexaose, in contrast to the behavior of classical alpha-amylases that are endohydrolases. Using p-nitrophenyl-alpha-D-maltohexaoside as a substrate, we determined a Km of 3 microM and a Vmax of 0.14 mumol/min/mg of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号