首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Icosahedral double-stranded DNA (dsDNA) bacterial viruses are known to package their genomes into preformed procapsids via a unique portal vertex. Bacteriophage PRD1 differs from the more commonly known icosahedral dsDNA phages in that it contains an internal lipid membrane. The packaging of PRD1 is known to proceed via preformed empty capsids. Now, a unique vertex has been shown to exist in PRD1. We show in this study that this unique vertex extends to the virus internal membrane via two integral membrane proteins, P20 and P22. These small membrane proteins are necessary for the binding of the putative packaging ATPase P9, via another capsid protein, P6, to the virus particle.  相似文献   

3.
Diffraction quality crystals are essential for crystallographic studies of protein structure, and the production of poorly diffracting crystals is often regarded as a dead end in the process. Here we show a dramatic improvement of poorly diffracting DsbG crystals allowing high-resolution diffraction data measurement. Before dehydration, the crystals are fragile and the diffraction pattern is streaky, extending to 10 A resolution. After dehydration, there is a spectacular improvement, with the diffraction pattern extending to 2 A resolution. This and other recent results show that dehydration is a simple, rapid, and inexpensive approach to convert poor quality crystals into diffraction quality crystals.  相似文献   

4.
Optimization of protein crystal formation is often a necessary step leading to diffraction-quality crystals to enable collection of a full X-ray data set. Typical protein crystal optimization involves screening different components, e.g., pH, precipitants, and additives of the precipitant solution. Here we present an example using an inhibitory antibody of urokinase plasminogen activator receptor (uPAR) where such procedures did not yield diffracting crystals. In contrast, it was the treatment of the protein with hydrogen peroxide incubation and the protein concentration reduction that were found to be key factors in obtaining diffracting crystals. Final crystals diffracted to 1.75 A, and belong to orthorhombic P2(1)2(1)2(1) space group with unit cell parameters a = 37.162 A, b = 84.474 A, c = 134.030 A, and contain one molecule of Fab fragment of anti-uro kinase receptor antibody in the asymmetric unit.  相似文献   

5.
The origin, evolution and relationships of viruses are all fascinating topics. Current thinking in these areas is strongly influenced by the tailed double-stranded (ds) DNA bacteriophages. These viruses have mosaic genomes produced by genetic exchange and so new natural isolates are quite dissimilar to each other, and to laboratory strains. Consequently, they are not amenable to study by current tools for phylogenetic analysis. Less attention has been paid to the Tectiviridae family, which embraces icosahedral dsDNA bacterial viruses with an internal lipid membrane. It includes viruses, such as PRD1, that infect Gram-negative bacteria, as well as viruses like Bam35 with Gram-positive hosts. Although PRD1 and Bam35 have closely related virion morphology and genome organization, they have no detectable sequence similarity. There is strong evidence that the Bam35 coat protein has the "double-barrel trimer" arrangement of PRD1 that was first observed in adenovirus and is predicted to occur in other viruses with large facets. It is very likely that a single ancestral virus gave rise to this very large group of viruses. The unprecedented degree of conservation recently observed for two Bam35-like tectiviruses made it important to investigate those infecting Gram-negative bacteria. The DNA sequences for six PRD1-like isolates (PRD1, PR3, PR4, PR5, L17, PR772) have now been determined. Remarkably, these bacteriophages, isolated at distinctly different dates and global locations, have almost identical genomes. The discovery of almost invariant genomes for the two main Tectiviridae groups contrasts sharply with the situation in the tailed dsDNA bacteriophages. Notably, it permits a sequence analysis of the isolates revealing that the tectiviral proteins can be dissected into a slowly evolving group descended from the ancestor, the viral self, and a more rapidly changing group reflecting interactions with the host.  相似文献   

6.
A simple method for growing protein crystals in the metastable zone using the vapor diffusion technique is described. The coverslips holding the hanging drops are transferred, after being incubated for some time at conditions normally giving many small crystals, over reservoirs at concentrations that normally yield clear drops. Fewer, much larger and better diffracting crystals are obtained, compared with conventional crystallization at similar conditions. To our knowledge, this is the first report of a significant crystal improvement due to "backing off" from nucleation conditions, using the hanging drop method. A correlation of the transfer time with published results for vapor diffusion equilibration of poly(ethylene glycol) solutions is also presented.  相似文献   

7.
Lim HH  Fang Y  Williams C 《PloS one》2011,6(9):e24653
Determination of crystal structures of membrane proteins is often limited by difficulties obtaining crystals diffracting to high resolution. Co-crystallization with Fab fragments of monoclonal antibodies has been reported to improve diffraction of membrane proteins crystals. However, it is not simple to generate useful monoclonal antibodies for membrane protein crystallography. In this report, we present an optimized process for efficient screening from immunization to final validation of monoclonal antibody for membrane protein crystallography.  相似文献   

8.
A simple and cost-efficient detergent screening strategy has been developed, by which a number of detergents were screened for their efficiency to extract and purify the recombinant ammonium/ammonia channel, AmtB, from Escherichia coli, hence selecting the most efficient detergents prior to large-scale protein production and crystallization. The method requires 1 ml cell culture and is a combination of immobilized metal ion affinity chromatography and filtration steps in 96-well plates. Large-scale protein purification and subsequent crystallization screening resulted in AmtB crystals diffracting to low resolution with three detergents. This strategy allows exclusion of detergents with the lowest probability in yielding protein crystals and selecting those with higher probability, hence, reducing the number of detergents to be screened prior to large-scale membrane protein purification and perhaps also crystallization.  相似文献   

9.
Several distinctive properties of PRD1, an icosahedral plasmid-dependent phage, are described. The drug-resistance plasmid-dependent host range of PRD1 extends beyond the P incompatibility group and includes gram-negative bacteria containing plasmids of incompatibility groups N and W. PRD1 phage will infect pseudomonads and Enterobacteriaceae containing either a P or W incompatibility group plasmid. PRD1 adsorbs to the cell wall of R(+) bacteria and thus its infectivity indicates cell wall alterations by these drug-resistance plasmid groups. PRD1 nucleic acid is duplex DNA with an estimated molecular weight of 24 x 10(6). The appearance of PRD1 in electron micrographs is suggestive of lipid content in addition to its buoyant density of 1.348 in CsCl and its sensitivity to chloroform. The latent period of PRD1 varies with the R(+) host bacterial strain used for growth of the phage.  相似文献   

10.
The Raman spectrum of a virus contains the structural signature of each of its molecular components (Thomas, 1987). We report the first Raman spectrum obtained from an intact, lipid-containing virus--the icosahedral bacteriophage PRD1--and show that this spectrum contains characteristic structure markers for the major capsid protein, the packaged double-stranded DNA genome, and the viral membrane which resides between the capsid and DNA. We find that the packaged genome of PRD1 exhibits Raman markers typical of the B-DNA secondary structure. Comparison of the Raman spectrum of the packaged DNA with that of protein-free DNA extracted from the virion shows further that the B-form secondary structure is not significantly perturbed by packaging in the virion. The Raman signature of the PRD1 membrane, monitored within the virion at 4 degrees C, is that of a phospholipid liquid-crystalline phase. The PRD1 capsid, which comprises several hundred copies of the major coat protein P3 (product of viral gene III) and a few copies of minor proteins, incorporates P3 capsomers predominantly in the beta-sheet conformation. The beta-sheet structure of P3 is maintained in the fully assembled PRD1 virion, as well as in the empty capsid. The present results demonstrate the feasibility of obtaining structural information from the three different classes of biomolecules--nucleic acid, protein, and lipid--which constitute a membrane-lined virus particle. Our results also demonstrate that the coat protein and double-stranded DNA components of a lipid-containing bacteriophage share many structural features in common with bacteriophage lacking a lipid membrane.  相似文献   

11.
The cubic phase or in meso crystallization method is responsible for almost 40 solved integral membrane protein structures. Most of these are small and compact proteins. A model for how crystals form by the in meso method has been proposed that invokes a transition between mesophases. In light of this model, we speculated that a more hydrated and open mesophase, of reduced interfacial curvature, would support facile crystallization of bigger and bulkier proteins. The proposal was explored here by performing crystallization in the presence of additives that swell the cubic phase. The additive concentration inducing swelling, as quantified by small-angle X-ray diffraction, coincided with a "crystallization window" in which two, very different transmembranal proteins produced crystals. That the swollen mesophase can grow structure-grade crystals was proven with one of these, the light-harvesting II complex. In most regards, the structural details of the corresponding complex resembled those of crystals grown by the conventional vapour diffusion method, with some important differences. In particular, packing density in the in meso-grown crystals was dramatically higher, more akin to that seen with water-soluble proteins, which accounts for their enhanced diffracting power. The layered and close in-plane packing observed has been rationalized in a model for nucleation and crystal growth by the in meso method that involves swollen mesophases. These results present a rational case for including mesophase-swelling additives in screens for in meso crystallogenesis. Their use will contribute to broadening the range of membrane proteins that yield to structure determination.  相似文献   

12.
DNA packaging orders the membrane of bacteriophage PRD1.   总被引:11,自引:0,他引:11       下载免费PDF全文
S J Butcher  D H Bamford    S D Fuller 《The EMBO journal》1995,14(24):6078-6086
Bacteriophage PRD1 contains a linear dsDNA genome enclosed by a lipid membrane lying within a protein coat. Determination of the structure of the detergent-treated particle to 2 nm by cryo-electron microscopy and three-dimensional reconstruction has defined the position of the major coat protein P3. The coat contains 240 copies of trimeric P3 packed into positions of local 6-fold symmetry on a T = 25 lattice. The three-dimensional structures of the PRD1 virion and a DNA packaging mutant to a resolution of 2.8 nm have revealed specific interactions between the coat and the underlying membrane. The membrane is clearly visible as two leaflets separated by 2 nm and spanned by transmembrane density. The size of the coat does not change upon DNA packaging. Instead, the number of interactions seen between the protein shell and the membrane and the order of the membrane components increase. Thus the membrane of PRD1 plays a role in assembly which is akin to that played by the nucleocapsid in other membrane viruses.  相似文献   

13.
Sorting nexins (SNXs) form a family of proteins known to interact with endosomal vesicles and to regulate various steps of vesicle transport. Sorting Nexin 9 (SNX9) is involved in the interface of endocytic, actin polymerizing, and signal transduction events in the cell. Here we report crystallization of the SNX9 PX-BAR domain protein. Initially we used an ordinary protein construct design, and protein crystallization approaches resulted in obtaining granular crystal-like precipitation. SDS-PAGE and MS analysis of the crystal-like precipitation followed by protein construct optimization and using of macro seeding technique resulted in X-ray quality diffracting crystals. The crystals belonged to P2(1)2(1)2(1) space group (a=65.6 A, b=117.5 A, c=145.8 A) with two protein molecules per asymmetric unit. A complete SAD data set from Se-Methionine derived crystal (3.2 A) has been collected to solve the structure.  相似文献   

14.
A general method for solving the phase problem from native crystals of macromolecules has long eluded structural biology. For well diffracting crystals this goal can now be achieved, as is shown here, thanks to modern data collection techniques and new statistical phasing algorithms. Using solely a native crystal of tetragonal hen egg-white lysozyme, a protein of 14 kDa molecular mass, it was possible to detect the positions of the ten sulfur and seven chlorine atoms from their anomalous signal, and proceed from there to obtain an electron-density map of very high quality.  相似文献   

15.
Production of diffracting crystals is a critical step in determining the three-dimensional structure of a protein by X-ray crystallography. Computational techniques to rank proteins by their propensity to yield diffraction-quality crystals can improve efficiency in obtaining structural data by guiding both protein selection and construct design. XANNpred comprises a pair of artificial neural networks that each predict the propensity of a selected protein sequence to produce diffraction-quality crystals by current structural biology techniques. Blind tests show XANNpred has accuracy and Matthews correlation values ranging from 75% to 81% and 0.50 to 0.63 respectively; values of area under the receiver operator characteristic (ROC) curve range from 0.81 to 0.88. On blind test data XANNpred outperforms the other available algorithms XtalPred, PXS, OB-Score, and ParCrys. XANNpred also guides construct design by presenting graphs of predicted propensity for diffraction-quality crystals against residue sequence position. The XANNpred-SG algorithm is likely to be most useful to target selection in structural genomics consortia, while the XANNpred-PDB algorithm is more suited to the general structural biology community. XANNpred predictions that include sliding window graphs are freely available from http://www.compbio.dundee.ac.uk/xannpred  相似文献   

16.
Using a high degree of automation, the Southeast Collaboratory for Structural Genomics (SECSG) has developed high throughput pipelines for protein production, and crystallization using a two-tiered approach. Primary, or tier-1, protein production focuses on producing proteins for members of large Pfam families that lack a representative structure in the Protein Data Bank. Target genomes are Pyrococcus furiosus and Caenorhabditis elegans. Selected human proteins are also under study. Tier-2 protein production, or target rescue, focuses on those tier-1 proteins, which either fail to crystallize or give poorly diffracting crystals. This two tier approach is more efficient since it allows the primary protein production groups to focus on the production of new targets while the tier-2 efforts focus on providing additional sample for further studies and modified protein for structure determination. Both efforts feed the SECSG high throughput crystallization pipeline, which is capable of screening over 40 proteins per week. Details of the various pipelines in use by the SECSG for protein production and crystallization, as well as some examples of target rescue are described.  相似文献   

17.
The phycobilisome photosynthetic antenna complex, found in cyanobacteria and red-algae, interacts with proteins expressed specifically to deal with different forms of physiological stress. Under conditions of nutrient starvation, the NblA protein is required for the process that leads to phycobilisome degradation and bleaching of the cells. HspA, a 16.5 kDa heat shock protein expressed in cyanobacterial cells, has been shown to provide functional stability to the phycobilisome during heat stress. We have cloned the genes encoding for these proteins into bacterial expression vectors in order to determine their three-dimensional structures. The resulting recombinant proteins were found to be sparingly soluble, limiting their usefulness in the performance of crystallization experiments. We have developed a novel protocol that utilizes relatively high concentrations of urea to afford sufficient solubility to the protein. This has lead to the successful growth of diffraction quality crystals of these proteins. Complete data sets collected to 2-2.5A from crystals of both proteins shows that the crystals are stable, and useful for structure determination. A preliminary structure of the NblA shows that denaturation has not occurred and specific protein-protein interactions have been preserved. We believe that this protocol may be a generally advantageous method to obtain well diffracting crystals of sparingly soluble proteins.  相似文献   

18.
Dihedral torsion angles evaluated for the phospholipid molecules resolved in the X-ray structures of transmembrane proteins in crystals are compared with those of phospholipids in bilayer crystals, and with the phospholipid conformations in fluid membranes. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid headgroup conformations in protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phospho-diester, that is characteristic of phospholipid bilayer membranes. This suggests that the lipids that are resolved in crystals of membrane proteins are not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from energetically disallowed skew conformations. This indicates a configurational heterogeneity in the lipids at a single binding site: eclipsed conformations occur also in some glycerol backbone torsion angles and C-C torsion angles in the lipid headgroups. Stereochemical violations in the protein-bound lipids are evidenced by one-third of the ester carboxyl groups in non-planar configurations, and certain of the carboxyls in the cis configuration. Some of the lipid structures in protein crystals have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in structures of the phytanyl chains associated with bacteriorhodopsin crystals are in the incorrect S-configuration.  相似文献   

19.
This article describes a new approach to structural proteomics that can produce and characterize diffracting, stable and radiation-resistant crystals of miniscule dimensions using nanotechnology. We believe that the protein microcrystals obtained by nanotechnology-based protein thin-film template crystallization, as well as groundbreaking technology, such as atomic force microscopy, nanogravimetry and synchrotron microfocus, have enabled protein nanocrystallography to be defined as a unique technology capable of forming and characterizing stable protein microcrystals down to atomic resolution. A new route from art to science and technology has, therefore, been opened in protein crystallography, and it could be used to unravel the mysteries of many systems that remain unsolved.  相似文献   

20.
The molecular chaperone SecB is part of the protein translocation pathway in Escherichia coli. SecB was purified from an overproducing strain and crystallized, resulting in crystals diffracting to 2.3-A resolution. The analysis of electrospray ionization mass spectra of dissolved crystals of SecB indicated that we have crystallized an acetylated form of SecB. Sequence analysis suggests that the protein is fully acetylated at its N-terminus in vivo, indicating that potential deacetylation is artificially introduced by purification methods. The high degree of acetylation that we observed might account for the fact that the crystals obtained as described in this study diffract to higher resolution than those in previously reported trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号