首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
The genetic polymorphism of human alpha 2-HS glycoprotein was studied by ultrathin-layer isoelectric focusing in a pH range 4.2-4.9 followed by immunoblotting using antisera specific for the protein. Three common phenotypes, HSGA1-1, HSGA2-2, and HSGA1-2, were easily recognized using this technique. Each homozygous phenotype was constituted by five major bands with different pI's, and the heterozygous phenotype represented an exact combination of each of them. After removal of sialic acid, each homozygous pattern was resumed in a single band, which differed in charge between HSGA1 and HSGA2. Asialo-heterozygous HSG1-2 combined the two bands characteristic of each allele product. Family studies are in agreement with an autosomal codominant transmission of the two alleles. Population studies indicate that the frequency of the HSGA1 and 2 alleles are .65 and .35, respectively.  相似文献   

3.
The genetic basis of esterase polymorphism in Heterodera glycines was investigated through controlled matings and analysis of F₁ and F₂ progeny. Three nematode lines, each fixed for a different esterase phenotype, were isolated and purified through repeated directional selection and inbreeding. Each phenotype was characterized by its distinct pair of closely spaced bands of esterase activity. Single-female single-male crosses were conducted according to a modified agar-plate mating technique. F₁ progeny were homogeneous, exhibiting both parental esterase phenotypes (codominant heterozygotes) but no hybrid bands. Approximately 1,500 F₂ progeny segregated in a 1:2:1 ratio for expression of the esterase phenotypes of the female parental line, the heterozygote, and the male parental line. Apparently the three esterase phenotypes correspond to three codominant alleles of a single esterase locus. Reciprocal crosses gave similar results, suggesting no maternal inheritance.  相似文献   

4.
Angiogenin (ANG) [also known as ribonuclease, RNase A family, 5 (RNASE5)], ribonuclease, RNase A family, 1 (pancreatic) (RNASE1) and ribonuclease, RNase A family, k6 (RNASE6) are three members of the RNase A superfamily. It has been suggested that these three genes play important roles in host defense. In this study, we obtained the whole open reading frame (ORF) of each gene and found the deduced proteins contain some similar structures harboring a catalytic triad and an invariant “CKXXNTF” signature motif. One single nucleotide polymorphism (SNP) was detected in each gene (g. 149G>T polymorphism in the porcine ANG gene, which resulted in an amino acid change from glycine to valine, g. 296A>G polymorphism in the porcine RNASE1 gene and g. 389C>T polymorphism in the porcine RNASE6 gene). Association analyses revealed the significant associations (P < 0.05) between the porcine ANG g. 149G>T polymorphism and mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean platelet volume (MPV) and platelet-large cell ratio (P-LCR) measured on 0-day-old pigs and MCV measured at 32 days after birth. The porcine RNASE6 g. 389C>T polymorphism was significantly associated (P < 0.05) with MCV, MCH and neutrophil percentage (NEI %) measured on 0-day-old pigs, respectively. Our current findings, if confirmed by other studies, might shed some light on the roles of the investigated genes in host defense.  相似文献   

5.
A new polymorphism, Pc, has been identified in human saliva. Two proteins, Pc 1 and Pc 2, are determined by alleles Pc1 and Pc2, respectively, which show autosomal codominant inheritance. No null phenotype has been encountered in 225 randomly collected salivas. The frequencies of the two alleles differ in the Black and White American populations, with Pc1 and Pc2 being 0.670 and 0.330 in the Black (N = 47) and 0.461 and 0.539 in the White (N = 178) populations, respectively. The alleles are in equilibrium in the two populations and segregation analyses (30 families) do not suggest the existence of a null allele in either population. Of seven polymorphic human salivary proteins determined by genes in the salivary protein complex (SPC), Pc phenotypes show association only with Ps phenotypes. Based on that association, our linkage studies, and the biochemical similarities with other SPC proteins, we tentatively conclude that Pc is a member of the SPC, bringing the total number of genes in that group to 13.  相似文献   

6.
Two acid RNases were purified from bovine spleen by means of ammonium sulfate fractionation, chromatographies on-phospho-cellulose, heparin-Sepharose CL-6B, poly G-Sepharose, and 2', 5'-ADP-Sepharose, and gel filtration on Toyopearl HW 55F. Both purified preparations were homogeneous as judged by disc electrophoresis at pH 4.3. They were designated as RNase BSP1 and RNase BSP2 in the order of elution from a phospho-cellulose column. RNase BSP2 was immunologically indistinguishable from RNase K2 from bovine kidney. RNase BSP1 was a typical pyrimidine base-specific, uridylic acid-preferential RNase and had very sharp pH optimum at 6.5. RNase BSP1 thus obtained was a glycoprotein giving two major bands on SDS-slap electrophoresis. Although the apparent molecular weight of RNase BSP1 was distributed in the range of 27,000-20,000, it decreased to about 17,000-18,000 after endoglycosidase F digestion. The N-terminal amino acid sequence up to the 20th amino acid had no homology to those of RNase K2 and RNase A.  相似文献   

7.
Three ribonucleases (RNases) with different molecular masses were isolated from human kidney. The enzymes were purified to an electrophoretically homogeneous state, and their respective molecular masses were found to be 18,000 (tentatively named RNase HK-1), 20,000 (RNase HK-2A), and 22,000 (RNase HK-2B) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the amino acid compositions, amino-terminal sequences, and enzymological properties of the enzymes indicate that RNase HK-1 is related to "nonsecretory" RNase, and that RNases HK-2A and HK-2B are both related to "secretory" RNase. Furthermore, RNase HK-1 showed cross-reactivity with an antibody specific to nonsecretory RNase from human urine, whereas RNases HK-2A and HK-2B showed cross-reactivity with another antibody specific to human urine secretory RNase. However, the carbohydrate compositions of RNases HK-2A and HK-2B were markedly different from that of the secretory urine RNase. This finding seems to indicate that the kidney is not the origin of the urine enzyme.  相似文献   

8.
Members of the RNase superfamily participate in a diverse array of biological processes, including RNA degradation, antipathogen activities, angiogenesis, and digestion. In the present study, we cloned the rat RNase9 gene by in silico methods and genome walking based on homology to the Macaca mulatta (rhesus monkey) epididymal RNase9. The gene is located on chromosome 15p14, spanning two exons, and is clustered with other members of the RNase A superfamily. It contains 1279 bp and encodes 182 amino acids, including a 24-amino acid signal peptide, and it has unique features known from other RNases. Unlike those other members, the rat RNase9 mRNA was specifically expressed in the epididymis, especially in the caput and corpus, and exhibited an androgen-dependent expression pattern but was downregulated in an epididymitis animal model. The RNASE9 was expressed in a principal cell-specific pattern. Interestingly, most of the principal cells in the caput expressed the RNASE9; however, in the distal caput, the principal cells showed a checkerboard-like pattern of immunoreactivity. We also observed that the RNASE9 was bound on the acrosomal domain of sperm. Its potential roles in sperm maturation are discussed.  相似文献   

9.
Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.  相似文献   

10.
A procedure was devised to isolate mutations that could restore conjugational competence to temperature sensitive ste mutants and simultaneously confer temperature-sensitive lethal growth phenotypes. Three such mutations, falling into two complementation groups, were identified on the basis of suppression of ste5 alleles. These same mutations were later shown to be capable of suppressing ste4 and ste7 alleles. Five mutations in a single complementation group were isolated as suppressors of ste2 alleles. None of the mutations described in this study conferred a homogeneous cell cycle arrest phenotype, and all were shown to define complementation groups distinct from those previously identified in studies of cell division cycle (cdc) mutations. In no instance did pseudoreversion appear to be achieved by mutational G1 arrest of ste mutant cells. Instead, it is proposed that the mutations restore conjugation by reestablishing the normal pheromone response.  相似文献   

11.
We have reported previously [Sakakibara, et al. (1991) Chem. Pharm. Bull. 39, 146-149] that a protein purified from a partially purified pharmaceutical preparation of human chorionic gonadotropin (a urinary protein preparation from pregnant women) is a unique nonsecretory ribonuclease (RNase)-like protein on the basis of its amino terminal sequence homology. We purified the protein further from the same materials by gel filtration and reversed-phase column chromatographies with RNase activity as an index. The purified protein was designated RNase UpI-2. The catalytic activity and its sensitivity to inhibition by divalent cations suggest that the protein is related to nonsecretory RNase. The estimated molecular weight of RNase UpI-2 (38 kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was significantly higher than that of urinary nonsecretory RNases (13 to 19 kDa) reported so far. After trifluoromethanesulfonic acid treatment, the molecular weight of RNase UpI-2 was reduced and approached that of nonsecretory RNase, which indicated that the protein contains a significant amount of carbohydrate (approximately 50%). RNase UpI-2 was immunoreactive with antibodies to a nonsecretory RNase, RNAase 1 [Yasuda et al. (1988) Biochim. Biophys. Acta 965, 185-194]. By immunoblot analysis of the protein freshly prepared from various urine samples, it was shown that a considerable amount of RNase UpI-2 is present in urine of pregnant women, but only a trace of RNase UpI-2, if any, was detected in urine of nonpregnant women and men. These results suggest the possibility that RNase UpI-2 may have been formed via a specific protein modification in pregnant women.  相似文献   

12.
A new and previously undescribed glycoprotein with a molecular weight of 43,000 has been isolated from human urine. This protein, designated GP43; copurified with ribonuclease, which has the same molecular weight, but ribonuclease activity was removed by passage through an affinity column of agarose-5'-(4-aminophenyl phosphoryl) uridine 2'(3') phosphate. GP43 contains about 5.9% neutral sugar, 2.3% hexosamine, and 1.6% sialic acid. A rabbit antibody to the purified GP43 reacted with human urine and serum as well as with the purified GP43. The genetic polymorphism of GP43 was then studied in desialylated human serum samples by urea-polyacrylamide gel isoelectric focusing, followed by immunoblotting with the specific antibody for GP43. Three common phenotypes, designated GP43 1, 1-2, and 2, were easily recognized using this technique and represented homozygosity or heterozygosity for two autosomal codominant alleles, GP43*1 and GP43/2. The frequencies of the GP43*1 and GP43*2 alleles in a Japanese population were 0.7683 and 0.2317, respectively.  相似文献   

13.
Similar to blood type, human plasma haptoglobin (Hp) is classified as 3 phenotypes: Hp 1-1, 2-1, or 2-2. The structural and functional relationship between the phenotypes, however, has not been studied in detail due to the complicated and difficult isolation procedures. This report provides a simple protocol that can be used to purify each Hp phenotype. Plasma was first passed through an affinity column coupled with a high affinity Hp monoclonal antibody. The bound material was washed with a buffer containing 0.2M NaCl and 0.02 M phosphate, pH 7.4, eluted at pH 11, and collected in tubes containing 1M Tris-HCl, pH 6.8. The crude Hp fraction was then chromatographed on a HPLC Superose 12 column in 0.05 M ammonium bicarbonate at a flow rate of 0.5 ml/min. The homogeneity of purified Hp 1-1, 2-1, or 2-2 was greater than 95% as judged by SDS-polyacrylamide gel electrophoresis. Essentially, each Hp isolated was not contaminated with hemoglobin and apolipoprotein A-I as that reported from the other methods, and was able to bind hemoglobin. Neuraminidase treatment demonstrated that the purified Hp possessed a carbohydrate moiety, while Western blot analysis confirmed alpha and beta chains corresponding to each Hp 1-1, 2-1, and 2-2 phenotype. The procedures described here represent a significant improvement in current purification methods for the isolation of Hp phenotypes. Circular dichroic spectra showed that the alpha-helical content of Hp 1-1 (29%) was higher than that of Hp 2-1 (22%), and 2-2 (21%). The structural difference with respect to its clinical relevance is discussed.  相似文献   

14.
15.
草鱼线粒体型超氧化物歧化酶的生化遗传特性   总被引:4,自引:0,他引:4  
颜勤  罗琛 《动物学报》2004,50(3):389-394
超氧化物歧化酶 (SOD)是一种对生物细胞保护至关重要、在进化上比较保守的酶。因此 ,超氧化物歧化酶作为分子钟或分子标记已被广泛应用于生物进化研究、群体遗传结构分析以及品系鉴定。但鱼类SOD的生物化学和遗传学特性都尚未进行过系统和深入的研究。为使这一重要的分子标记能更好地应用于鱼类遗传育种、种质资源保护以及进化研究 ,本实验采用聚丙烯酰胺梯度凝胶垂直电泳法 ,研究了草鱼线粒体型超氧化物歧化酶 (fm SOD)的同功酶形式 ,生化遗传表型、亚基组成以及金属类型。实验结果表明 ,草鱼fm SOD有三种不同的同功酶形式 ;按从正极到负极的排列分别命名为fm SOD 1 ,fm SOD 2 ,fm SOD 3。这三种不同的fm SOD在草鱼群体中可构成 3种不同的生化遗传学表型 :表型 1个体只含有迁移率最快的fm SOD 1同功酶 ;表型3个体只含有迁移率最慢的fm SOD 3同功酶 ;而表型 2个体中含有所有三种不同形式的同功酶。在野生草鱼群体中 ,存在所有三种表现型 ;而在基因纯合型的雌核发育草鱼群体中只检测到表型 1和表型 3。野生草鱼群体中三种表现型的个体数之比符合一对等位基因分离的 1∶2∶1孟德尔遗传分离比例。由这些实验结果得出以下结论 :(1 )草鱼fm SOD是由细胞核DNA上的基因所编码而不是由线粒体DNA上的基因所编码的  相似文献   

16.
Ribonuclease inhibitor from human placenta. Purification and properties   总被引:22,自引:0,他引:22  
A soluble ribonuclease inhibitor from the human placenta has been purified 4000-fold by a combination of ion exchange and affinity chromatography. The inhibitor has been isolated in 45% yield (about 2 mg/placenta) as a protein that is homogeneous by sodium dodecyl sulfate-gel electrophoresis. In common with the inhibitors of pancreatic ribonuclease from other tissues that have been studied earlier, the placental inhibitor is an acidic protein of molecular weight near 50,000; it forms a 1:1 complex with bovine pancreatic RNase A and is a noncompetitive inhibitor of the pancreatic enzyme, with a Ki of 3 X 10(-10) M. The amino acid composition of the protein has been determined. The protein contains 30 half-cystine plus cysteine residues determined as cysteic acid after performic acid oxidation. At pH 8.6 the nondenatured protein alkylated with iodoacetic acid in the presence of free thiol has 8 free sulfhydryl groups. The inhibitor is irreversibly inactivated by sulfhydryl reagents and also by removal of free thiol from solutions of the protein. Inactivation by sulfhydryl reagents causes the dissociation of the RNase - inhibitor complex into active RNase and inactive inhibitor.  相似文献   

17.
Human pancreatic ribonuclease 1 (RNase 1) is a glycoprotein expressed mainly by the pancreas and also found in endothelial cells. The diagnosis of pancreatic cancer (PaC) remains difficult and therefore the search for sensitive and specific markers is required. Previous studies showed that RNase 1 from human healthy pancreas contained only neutral glycans, whereas RNase 1 from PaC cell lines contained sialylated structures. To determine whether these glycan tumor cell-associated changes were also characteristic of serum RNase 1 and could be used as a marker of PaC, we have analyzed the glycosylation of serum RNase 1. The origin of serum RNase 1 was also investigated. Serum RNase 1 from two PaC patients and two controls was purified and the glycans analyzed by high-performance liquid chromatography (HPLC)-based sequencing and mass spectrometry. Although normal and tumor serum RNase 1 contained the same glycan structures, there was an increase of 40% in core fucosylation in the main sialylated biantennary glycans in the PaC serum RNase 1. This change in proportion would be indicative of a subset of tumor-associated glycoforms of RNase 1, which may provide a biomarker for PaC. Two-dimensional electrophoresis of the RNase 1 from several endothelial cell lines, EA.hy926, human umbilical vein endothelial cells (HUVEC), human mammary microvessel endothelial cells (HuMMEC), and human lung microvessel endothelial cells (HuLEC), showed basically the same pattern and was also very similar to that of serum RNase 1. RNase 1 from EA.hy926 was then purified and presented a glycosylation profile very similar to that from serum RNase 1, suggesting that endothelial cells are the main source of this enzyme.  相似文献   

18.
In addition to the three polymorphic sites responsible for protein polymorphism, a new polymorphic site has been identified in intron 7 of the human deoxyribonuclease I (DNase I) gene. Three phenotypes were observed on single-strand conformational polymorphism analysis of a 266-bp polymerase chain reaction-amplified fragment containing exon 7 and part of intron 7 of the human DNase I gene. DNA sequencing analysis demonstrated that a C-G substitution occurred at position 1978 in intron 7. This substitution was confirmed by restriction fragment length polymorphism analysis, since a new Msp1 site is created by the substitution. Population and family studies showed that the inheritance of the genotypes for DNase I C1978G polymorphism is controlled by two codominant alleles, tentatively designated DNASE1*1978C and *1978G. The gene frequencies in a Japanese population were significantly different from those in a Caucasian (German) population. The C1978G polymorphism is in linkage disequilibrium with the common DNase I protein phenotypes 1, 1–2, and 2. Received: 20 March 1996 / Revised: 14 May 1996  相似文献   

19.
Summary The circadian rhythm phenotypes of eight chromosome aberrations with a breakpoint in the region of the per locus (3B1-2) were analyzed. Two duplications and five deficiencies with a 3B1-2 breakpoint produce either a wild-type or an arrhythmic clock phenotype while one translocation with a 3B1-2 breakpoint, T(1;4)JC43, produces locomotor-activity rhythms with either very-long period (31–39 h), rhythms that grade into arrhythmicity, or completely arrhythmic phenotypes. This is a unique phenotype that had not previously been observed for mutants at the per locus. An extensive complementation analysis of 3B1-2 chromosome aberrations and per mutant alleles provided no compelling evidence for genetic complexity at the per locus. This is in contrast to the report of Young and Judd (1978). Analysis of both the locomotor-activity and eclosion phenotypes of 3B1-2 chromosome aberrations did not uncover differences in the genetic control of these two rhythms. The clock phenotypes of 3B1-2 chromosome aberrations, the three per mutant alleles, and per + duplications suggest that mutations at the per locus shorten, lengthen, or eliminate periodicity by respectively increasing, decreasing, or eliminating per activity.  相似文献   

20.
Two potential single nucleotide polymorphisms [SNPs; rs1804215 (G979T) and rs11545379 (G1169T)] have been identified in the human pancreatic ribonuclease, RNase 1, gene (RNASE1) that could give rise to an amino acid substitution in the protein, but relevant population data are not available. We have developed genotyping methods for each SNP using the mismatched PCR-restriction fragment length polymorphism technique. These methods are advantageous in comparison with other SNP genotyping methods because they are technically simpler and do not require specialized instruments. We applied these genotyping methods to examine the genotype distribution of each SNP in four populations, including Japanese populations living in two prefectures, an Ovambo population, and a Turkish population. In all the populations studied, however, only a single genotype for each SNP was found. Therefore, irrespective of differences in ethnic groups, RNASE1 might show markedly low heterogeneity in its genetic structure with regard to these SNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号