首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
2.
3.
Laccases are widely present in bacteria, fungi, plants and invertebrates and involved in a variety of physiological functions. Here, we report that Beauveria bassiana, an economic important entomopathogenic fungus, secretes a laccase 2 (BbLac2) during infection that detoxifies insect immune response-generated reactive oxygen species (ROS) and interferes with host immune phenoloxidase (PO) activation. BbLac2 is expressed in fungal cells during proliferation in the insect haemocoel and can be found to distribute on the surface of haemolymph-derived in vivo fungal hyphal bodies or be secreted. Targeted gene-knockout of BbLac2 increased fungal sensitivity to oxidative stress, decreased virulence to insect, and increased host PO activity. Strains overexpressing BbLac2 showed increased virulence, with reduced host PO activity and lowered ROS levels in infected insects. In vitro assays revealed that BbLac2 could eliminate ROS and oxidize PO substrates (phenols), verifying the enzymatic functioning of the protein in detoxification of cytotoxic ROS and interference with the PO cascade. Moreover, BbLac2 acted as a cell surface protein that masked pathogen associated molecular patterns (PAMPs), enabling the pathogen to evade immune recognition. Our data suggest a multifunctional role for fungal pathogen-secreted laccase 2 in evasion of insect immune defenses.  相似文献   

4.
Finlay BB  McFadden G 《Cell》2006,124(4):767-782
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.  相似文献   

5.
The human immune system has developed an elaborate network of cascades for dealing with microbial intruders. Owing to its ability to rapidly recognize and eliminate microorganisms, the complement system is an essential and efficient component of this machinery. However, many pathogenic organisms have found ways to escape the attack of complement through a range of different mechanisms. Recent discoveries in this field have provided important insights into these processes on a molecular level. These vital developments could augment our knowledge of the pathology and treatment of infectious and inflammatory diseases.  相似文献   

6.
Upon entering the human body, bacteria are confronted with the sophisticated innate defense mechanisms of the human host. From work in recent years it has become obvious that a new and growing family of small and excreted proteins can counteract the antibacterial effects of innate immunity. These highly selective proteins pick out crucial elements of our immune system and inhibit their function. In Staphylococcus aureus these proteins act on specific cellular receptors, on antimicrobial peptides and especially on the complement system. The combined action of this growing group of essential virulence factors ascertains efficient innate immune evasion.  相似文献   

7.
The hypersensitive response (HR), elicited when resistant hosts are infected by incompatible races of biotrophic fungi, has been researched extensively. New studies on host responses to necrotrophic fungi are beginning to show that when the HR occurs in hosts colonized by necrotrophs, fungal growth is accelerated rather than retarded. We review current knowledge about how necrotrophs survive in host plants in which the HR is expressed. We discuss how necrotrophs cope with the environmental factors formed as a result of the HR. Necrotrophs contain an array of enzymes, which can help in exploiting the hostile environment in order to colonize the host and to remove or inactivate active oxygen species (AOS). Among this array of enzymes are superoxide dismutase (SOD), peroxidases, catalase, and perhaps laccases and polyphenol oxidases. Of these, only SOD and catalase have been studied in any detail. The precise significance of SOD and catalase in host invasion and fungal resistance is still not adequately known. The importance of different peroxidases is also still far from clear. We speculate that AOS species may trigger the response of necrotrophs to the host environment.  相似文献   

8.
9.
During the millions of years they have coexisted with their hosts, viruses have learned how to manipulate host immune control mechanisms. Viral gene functions provide an overview of many relevant principles in cell biology and immunology. Our knowledge of viral gene functions must be integrated into virus-host interaction networks to understand viral pathogenesis, and could lead to new anti-viral strategies and the ability to exploit viral functions as tools in medicine.  相似文献   

10.
Viruses employ various modes to evade immune detection. Two possible evasion modes are a reduction of the number of epitopes presented and the mimicry of host epitopes. The immune evasion efforts are not uniform among viral proteins. The number of epitopes in a given viral protein and the similarity of the epitopes to host peptides can be used as a measure of the viral attempts to hide this protein. Using bioinformatics tools, we here present a genomic analysis of the attempts of four human herpesviruses (herpes simplex virus type 1-human herpesvirus 1, Epstein-Barr virus-human herpesvirus 4, human cytomegalovirus-human herpesvirus 5, and Kaposi's sarcoma-associated herpesvirus-human herpesvirus 8) and one murine herpesvirus (murine herpesvirus 68) to escape from immune detection. We determined the full repertoire of CD8 T-lymphocyte epitopes presented by each viral protein and show that herpesvirus proteins present many fewer epitopes than expected. Furthermore, the epitopes that are presented are more similar to host epitopes than are random viral epitopes, minimizing the immune response. We defined a score for the size of the immune repertoire (the SIR score) based on the number of epitopes in a protein. The numbers of epitopes in proteins expressed in the latent and early phases of infection were significantly smaller than those in proteins expressed in the lytic phase in all tested viruses. The latent and immediate-early epitopes were also more similar to host epitopes than were lytic epitopes. A clear trend emerged from the analysis. In general, herpesviruses demonstrated an effort to evade immune detection. However, within a given herpesvirus, proteins expressed in phases critical to the fate of infection (e.g., early lytic and latent) evaded immune detection more than all others. The application of the SIR score to specific proteins allows us to quantify the importance of immune evasion and to detect optimal targets for immunotherapy and vaccine development.  相似文献   

11.
During the millions of years they have coexisted with their hosts, viruses have learned how to manipulate host immune control mechanisms. Viral gene functions provide an overview of many relevant principles in cell biology and immunology. Our knowledge of viral gene functions must be integrated into virus-host interaction networks to understand viral pathogenesis, and could lead to new anti-viral strategies and the ability to exploit viral functions as tools in medicine.  相似文献   

12.
Map kinases in fungal pathogens   总被引:22,自引:0,他引:22  
MAP kinases in eukaryotic cells are well known for transducing a variety of extracellular signals to regulate cell growth and differentiation. Recently, MAP kinases homologous to the yeast Fus3/Kss1 MAP kinases have been identified in several fungal pathogens and found to be important for appressorium formation, invasive hyphal growth, and fungal pathogenesis. This MAP kinase pathway also controls diverse growth or differentiation processes, including conidiation, conidial germination, and female fertility. MAP kinases homologous to yeast Slt2 and Hog1 have also been characterized in Candida albicans and Magnaporthe grisea. Mutants disrupted of the Slt2 homologues have weak cell walls, altered hyphal growth, and reduced virulence. The Hog1 homologues are dispensable for growth but are essential for regulating responses to hyperosmotic stress in C. albicans and M. grisea. Overall, recent studies have indicated that MAP kinase pathways may play important roles in regulating growth, differentiation, survival, and pathogenesis in fungal pathogens.  相似文献   

13.
Dimorphism in fungal plant pathogens   总被引:1,自引:0,他引:1  
Fungi are mostly sessile organisms, and thus have evolved ways to cope with environmental changes. Many fungi produce 'dormant' structures, which allow them to survive periods of unfavorable conditions. Another ingenious active approach to a changing environment has been adopted by the 'dimorphic fungi', which simply shift their thallic organization as a way to adapt and thrive in the new conditions. Dimorphism is extensively exploited by both plant and animal pathogenic fungi, where the encounter with the host prompts a shift in the mode of growth. In this review, we focus on the phenomenon of dimorphism among plant pathogenic fungi through discussion of several relatively well-studied exemplar species.  相似文献   

14.
Abstract The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.  相似文献   

15.
16.
17.
Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.  相似文献   

18.
The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.  相似文献   

19.
20.
TNF-alpha is crucial in defense against intracellular microbes. Host immune cells use type 3 complement receptors (CR3) to regulate excess TNF-alpha production during physiological clearance of apoptotic cells. BAD1, a virulence factor of Blastomyces dermatitidis, is displayed on yeast and released during infection. BAD1 binds yeast to macrophages (Mphi) via CR3 and CD14 and suppresses TNF-alpha, which is required for resistance. We investigated whether blastomyces adhesin 1 (BAD1) exploits host receptors for immune deviation and pathogen survival. Soluble BAD1 rapidly entered Mphi, accumulated intracellularly by 10 min after introduction to cells, and trafficked to early and late endosomes. Inhibition of receptor recycling by monodansyl cadaverine blocked association of BAD1 with Mphi and reversed TNF-alpha suppression in vitro. Inhibition of BAD1 uptake with cytochalasin D and FcR-redirected delivery of soluble BAD1 as Ag-Ab complexes or of wild-type yeast opsonized with IgG similarly reversed TNF-alpha suppression. Hence, receptor-mediated entry of BAD1 is requisite in TNF-alpha suppression, and the route of entry is critical. Binding of soluble BAD1 to Mphi of CR3(-/-) and CD14(-/-) mice was reduced to 50 and 33%, respectively, of that in wild-type mice. Mphi of CR3(-/-) and CD14(-/-) mice resisted soluble BAD1 TNF-alpha suppression in vitro, but, in contrast to CR3(-/-) cells, CD14(-/-) cells were still subject to suppression mediated by surface BAD1 on wild-type yeast. CR3(-/-) mice resisted both infection and TNF-alpha suppression in vivo, in contrast to wild-type and CD14(-/-) mice. BAD1 of B. dermatitidis thus co-opts normal host cell physiology by exploiting CR3 to subdue TNF-alpha production and foster pathogen survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号