首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Rrp5p is the only protein so far known to be required for the processing of yeast pre-rRNA at both the early sites A0, A1 and A2 leading to 18S rRNA and at site A3, the first step specific for the pathway leading to 5.8S/25S rRNA. Previous in vivo mutational analysis of Rrp5p demonstrated that the first 8 of its 12 S1 RNA-binding motifs are involved in the formation of the 'short' form of 5.8S rRNA (5.8S(S)), which is the predominant species under normal conditions. We have constructed two strains in which the genomic RRP5 gene has been replaced by an rrp5 deletion mutant lacking either S1 motifs 3-5 (rrp5-Delta3) or 5-8 (rrp5-Delta4). The first mutant synthesizes almost exclusively 5.8S(L) rRNA, whereas the second one still produces a considerable amount of the 5.8S(S) species. Nevertheless, both mutations were found to block cleavage at site A3 completely. Instead, a novel processing event occurs at a site in a conserved stem-loop structure located between sites A2 and A3, which we have named A4. A synthetic lethality screen using the rrp5-Delta3 and rrp-Delta4 mutations identified the REX4 gene, which encodes a non-essential protein belonging to a class of related yeast proteins that includes several known 3'-->5' exonucleases. Inactivation of the REX4 gene in rrp5-Delta3 or rrp-Delta4 cells abolished cleavage at A4, restored cleavage at A3 and returned the 5.8S(S):5.8S(L) ratio to the wild-type value. The sl phenotype of the rrp5Delta/rex4(-) double mutants appears to be due to a severe disturbance in ribosomal subunit assembly, rather than pre-rRNA processing. The data provide direct evidence for a crucial role of the multiple S1 motifs of Rrp5p in ensuring the correct assembly and action of the processing complex responsible for cleavage at site A3. Furthermore, they clearly implicate Rex4p in both pre-rRNA processing and ribosome assembly, even though this protein is not essential for yeast.  相似文献   

5.
6.
In eukaryotes, ribosome assembly requires hundreds of conserved essential proteins not present in the mature particle. Despite their importance, the function of most factors remains unknown. This is because protein deletion often affects the composition of the entire particle. Additionally, many proteins are present in assembling ribosomes for extended times, which makes it difficult to pinpoint their role to a particular step. Here we have combined classical yeast biochemistry with experiments using recombinant proteins and RNA to study the role of Dim2 and its interaction with Nob1, the nuclease that generates the 3'-end of 18 S rRNA. Analysis of Dim2 mutants in which the interaction with Nob1 is disrupted demonstrates that this interaction between Dim2 and Nob1 is essential for optimal growth, and RNA binding experiments show that Dim2 increases Nob1 RNA affinity. Furthermore, our data indicate that Dim2 helps regulate Nob1 cleavage activity at the 3'-end of 18 S rRNA, as point mutants where this interaction is abolished in vitro accumulate pre-ribosomes containing Nob1 and 20 S rRNA in vivo. Interestingly, the site of interaction with Nob1 is mapped to the canonical RNA binding surface of a KH-like domain in Dim2, providing another example where an RNA-binding domain can be repurposed for protein interactions.  相似文献   

7.
Time-dependent chemical modification and cleavage results have provided intriguing insights into structural changes that occur in the distal loop of helix 11 in 16S ribosomal RNA (rRNA). Located distant from the decoding region, between proteins S17 and S20, the results of this study suggest that this region of rRNA may act as a buffer or a spring between these two proteins during protein biosynthesis. During the assembly process, protein S17 apparently produces the major structural deformations in this region, causing it to be folded in a spring-like structure. Base C264 in this region shows erratic behavior during assembly and also shows time-dependent enhancement when elongation factor G with GTP is added to 70S ribosomes. Evidence is presented to suggest that this region of rRNA may be used to allow relative motion to occur between proteins S17 and S20 during translocation.  相似文献   

8.
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.  相似文献   

9.
Cytosolic and nuclear iron‐sulphur (Fe/S) proteins include essential components involved in protein translation, DNA synthesis and DNA repair. In yeast and human cells, assembly of their Fe/S cofactor is accomplished by the CIA (cytosolic iron‐sulphur protein assembly) machinery comprised of some 10 proteins. To investigate the extent of conservation of the CIA pathway, we examined its importance in the early‐branching eukaryote Trypanosoma brucei that encodes all known CIA factors. Upon RNAi‐mediated ablation of individual, early‐acting CIA proteins, no major defects were observed in both procyclic and bloodstream stages. In contrast, parallel depletion of two CIA components was lethal, and severely diminished cytosolic aconitase activity lending support for a direct role of the CIA proteins in cytosolic Fe/S protein biogenesis. In support of this conclusion, the T. brucei CIA proteins complemented the growth defects of their respective yeast CIA depletion mutants. Finally, the T. brucei CIA factor Tah18 was characterized as a flavoprotein, while its binding partner Dre2 functions as a Fe/S protein. Together, our results demonstrate the essential and conserved function of the CIA pathway in cytosolic Fe/S protein assembly in both developmental stages of this representative of supergroup Excavata.  相似文献   

10.
Mitochondria are indispensable for cell viability; however, major mitochondrial functions including citric acid cycle and oxidative phosphorylation are dispensable. Most known essential mitochondrial proteins are involved in preprotein import and assembly, while the only known essential biosynthetic process performed by mitochondria is the biogenesis of iron-sulfur clusters (ISC). The components of the mitochondrial ISC-assembly machinery are derived from the prokaryotic ISC-assembly machinery. We have identified an essential mitochondrial matrix protein, Isd11 (YER048w-a), that is found in eukaryotes only. Isd11 is required for biogenesis of cellular Fe/S proteins and thus is a novel subunit of the mitochondrial ISC-assembly machinery. It forms a complex with the cysteine desulfurase Nfs1 and is required for formation of an Fe/S cluster on the Isu scaffold proteins. We conclude that Isd11 is an indispensable eukaryotic component of the mitochondrial machinery for biogenesis of Fe/S proteins.  相似文献   

11.
Mutational analysis has shown that the integrity of the region in domain III of 25S rRNA that is involved in binding of ribosomal protein L25 is essential for the production of mature 25S rRNA in the yeast Saccharomyces cerevisiae. However, even structural alterations that do not noticeably affect recognition by L25, as measured by an in vitro assay, strongly reduced 25S rRNA formation by inhibiting the removal of ITS2 from the 27SB precursor. In order to analyze the role of L25 in yeast pre-rRNA processing further we studied the effect of genetic depletion of the protein or mutation of each of its three previously identified functional domains, involved in nuclear import (N-terminal), RNA binding (central) and 60S subunit assembly (C-terminal), respectively. Depletion of L25 or mutating its (pre-)rRNA-binding domain blocked conversion of the 27SB precursor to 5.8S/25S rRNA, confirming that assembly of L25 is essential for ITS2 processing. However, mutations in either the N- or the C-terminal domain of L25, which only marginally affect its ability to bind to (pre-)rRNA, also resulted in defective ITS2 processing. Furthermore, in all cases there was a notable reduction in the efficiency of processing at the early cleavage sites A0, A1 and A2. We conclude that the assembly of L25 is necessary but not sufficient for removal of ITS2, as well as for fully efficient cleavage at the early sites. Additional elements located in the N- as well as C-terminal domains of L25 are required for both aspects of pre-rRNA processing.  相似文献   

12.
13.
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.  相似文献   

14.
V Nowotny  K H Nierhaus 《Biochemistry》1988,27(18):7051-7055
A protein which initiates assembly of ribosomes is defined as a protein which binds to the respective rRNA without cooperativity (i.e., without the help of other proteins) during the onset of assembly and is essential for the formation of active ribosomal subunits. The number of proteins binding without cooperativity was determined by monitoring the reconstitution output of active particles at various inputs of 16S rRNA, in the presence of constant amounts of 30S-derived proteins (TP30): This showed that only two of the proteins of the 30S subunit are assembly-initiator proteins. These two proteins are still present on a LiCl core particle comprising 16S rRNA and 12 proteins (including minor proteins). The 12 proteins were isolated, and a series of reconstitution experiments at various levels of rRNA excess demonstrated that S4 and S7 are the initiator proteins. Pulse-chase experiments performed during the early assembly with 14C- and 3H-labeled TP30 and the determination of the 14C/3H ratio of the individual proteins within the assembled particles revealed a bilobal structure of the 30S assembly: A group of six proteins headed by S4 (namely, S4, S20, S16, S15, S6, and S18) resisted the chasing most efficiently (S4 assembly domain). None of the proteins depending on S7 during assembly were found in this group but rather in a second group with intermediate chasing stability [S7 assembly domain; consisting of S7, S9, (S8), S19, and S3]. A number of proteins could be fully chased during the early assembly and therefore represent "late assembly proteins" (S10, S5, S13, S2, S21, S1). These findings fit well with the 30S assembly map.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
18.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

19.
J Venema  Y Henry    D Tollervey 《The EMBO journal》1995,14(19):4883-4892
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S rRNA) are transcribed as a single precursor, which is subsequently processed into the mature species by a complex series of cleavage and modification reactions. Early cleavage at site A1 generates the mature 5'-end of 18S rRNA. Mutational analyses have identified a number of upstream regions in the 5' external transcribed spacer (5' ETS), including a U3 binding site, which are required in cis for processing at A1. Nothing is known, however, about the requirement for cis-acting elements which define the position of the 5'-end of the 18S rRNA or of any other eukaryotic rRNA. We have introduced mutations around A1 and analyzed them in vivo in a genetic background where the mutant pre-rRNA is the only species synthesized. The results indicate that the mature 5'-end of 18S rRNA in yeast is identified by two partially independent recognition systems, both defining the same cleavage site. One mechanism identifies the site of cleavage at A1 in a sequence-specific manner involving recognition of phylogenetically conserved nucleotides immediately upstream of A1 in the 5' ETS. The second mechanism specifies the 5'-end of 18S rRNA by spacing the A1 cleavage at a fixed distance of 3 nt from the 5' stem-loop/pseudoknot structure located within the mature sequence. The 5' product of the A1 processing reaction can also be identified, showing that, in contrast to yeast 5.8S rRNA, the 5'-end of 18S rRNA is generated by endonucleolytic cleavage.  相似文献   

20.
A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA–protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号