首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression domains of genes implicated in forebrain patterning often share borders at specific anteroposterior positions. This observation lies at the heart of the prosomeric model, which proposes that such shared borders coincide with proposed compartment boundaries and that specific combinations of genes expressed within each compartment are responsible for its patterning. Thus, genes such as Emx1, Emx2, Pax6, and qin (Bf1) are seen as being responsible for specifying different regions in the forebrain (diencephalon and telencephalon). However, the early expression of these genes, before the appearance of putative compartment boundaries, has not been characterized. In order to determine whether they have stable expression domains before this stage, we have compared mRNA expression of each of the above genes, relative both to one another and to morphological landmarks, in closely staged chick embryos. We find that, between HH stage 8 and HH stage 13, each of the genes has a dynamic spatial and temporal expression pattern. To test for autonomy of gene expression in the prosencephalon, we grafted tissue from this region to more caudal positions in the neural tube and analyzed for expression of Emx1, Emx2, qin, or Pax6. We find that gene expression is autonomous in prosencephalic tissue from as early as HH stage 8. In the case of Emx1, our data suggest that, from as early stage 8, presumptive telencephalic tissue also is committed to express this gene. We propose that early patterning along the anteroposterior axis of the presumptive telencephalon occurs across a field that is subdivided by different combinations of genes, with some overlapping areas, but without either sharp boundaries or stable interfaces between expression domains.  相似文献   

2.
Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting.  相似文献   

3.
Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals.  相似文献   

4.
5.
Embryogenesis is an extraordinarily robust process, exhibiting the ability to control tissue size and repair patterning defects in the face of environmental and genetic perturbations. The size and shape of a developing tissue is a function of the number and size of its constituent cells as well as their geometric packing. How these cellular properties are coordinated at the tissue level to ensure developmental robustness remains a mystery; understanding this process requires studying multiple concurrent processes that make up morphogenesis, including the spatial patterning of cell fates and apoptosis, as well as cell intercalations. In this work, we develop a computational model that aims to understand aspects of the robust pattern repair mechanisms of the Drosophila embryonic epidermal tissues. Size control in this system has previously been shown to rely on the regulation of apoptosis rather than proliferation; however, to date little work has been done to understand the role of cellular mechanics in this process. We employ a vertex model of an embryonic segment to test hypotheses about the emergence of this size control. Comparing the model to previously published data across wild type and genetic perturbations, we show that passive mechanical forces suffice to explain the observed size control in the posterior (P) compartment of a segment. However, observed asymmetries in cell death frequencies across the segment are demonstrated to require patterning of cellular properties in the model. Finally, we show that distinct forms of mechanical regulation in the model may be distinguished by differences in cell shapes in the P compartment, as quantified through experimentally accessible summary statistics, as well as by the tissue recoil after laser ablation experiments.  相似文献   

6.
OBJECTIVE: To review the value of biopathologic factors in single lymphomatous patients across the boundaries of histologic classification. STUDY DESIGN: In a series of previous studies, based on a large collection of biopsy samples, the value of the above biopathologic characteristics in individual lymphomatous patients was quantitatively evaluated. RESULTS: The relationships between apoptotic index and growth fraction, in light of the expression of oncogenes, which regulate cell birth and death, were of particular value in determining the growth pattern of different lymphoma cases across the boundaries of histologic classification. CONCLUSION: The study of mechanisms that regulate cell proliferation and death might have therapeutic implications as the proper therapeutic approach should be based on detailed knowledge of the kinetic and molecular characteristics of each tumor.  相似文献   

7.
Hindbrain patterning involves graded responses to retinoic acid signalling   总被引:5,自引:0,他引:5  
Several recent studies have shown that retinoic acid signalling is required for correct patterning of the hindbrain. However, the data from these studies are disparate and the precise role of retinoic acid signalling in patterning the anteroposterior axis of the neural tube remains uncertain. To help clarify this issue, we have cultured a staged series of chick embryos in the presence of an antagonist to the all three retinoic acid receptors. Our data indicate that retinoic acid is the transforming signal involved in the expansion of posterior hindbrain structures. We find that the hindbrain region of the neural tube down to the level of the sixth somite acquires the identity of rhombomere 4 when retinoic acid signalling is blocked. Specification of future rhombomere boundaries has a retinoic acid dependency between stage 5 and stage 10(+) that is lost progressively in an anterior-to-posterior sequence. Furthermore, the application of various concentrations of antagonist shows that successively more posterior rhombomere boundaries require progressively higher concentration of endogenous retinoic acid for their correct positioning, a result that strengthens the hypothesis that a complex retinoid gradient acts to pattern the posterior hindbrain. Our dissection of early retinoic acid functions allows us to re-interpret the wide disparity of hindbrain phenotypes previously observed in various models of retinoic acid deficiency.  相似文献   

8.
Laser-guided direct writing for three-dimensional tissue engineering   总被引:3,自引:0,他引:3  
One of the principal limitations to the size of an engineered tissue is oxygen and nutrient transport. Lacking a vascular bed, cells embedded in an engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. One possible solution is to directly write vascular structures within the engineered tissue prior to implantation, reconstructing the tissue according to its native architecture. The cell patterning technique, laser-guided direct writing (LGDW), can pattern multiple cells types with micrometer resolution on arbitrary surfaces, including biological gels. Here we show that LGDW can pattern human umbilical vein endothelial cells (HUVEC) in two- and three-dimensions with micrometer accuracy. By patterning HUVEC on Matrigel, we can direct their self-assembly into vascular structures along the desired pattern. Finally, co-culturing the vascular structures with hepatocytes resulted in an aggregated tubular structure similar in organization to a hepatic sinusoid. This capability can facilitate studies of tissue architecture at the single cell level, and of heterotypic interactions underlying processes such as liver and pancreas morphogenesis, differentiation, and angiogenesis.  相似文献   

9.
Rybakin VS 《Tsitologiia》2000,42(10):937-943
True multicellularity is characterized by complex interactions between individual cells of the organism as well as by organization of cell masses into spatially and functionally determined structures promoting the exchange of information. Morphogenetic processes--genetically programmed generation of structures--always correlate with determination and maintenance of a pattern, i.e. a system of spatial relationships between them. Hydroid polyps provide a wide variety of approaches to study morphogenesis and patterning. Being comparatively simply organized, these animals have nevertheless certain developed mechanisms underlaying such processes as regeneration of missing structures, recovery of normal pattern after dissociation of polyps into single cells, tissue transdifferentiation in non-complementary chimaeras. An important feature of regeneration of hydroid polyps is its independence of the nerve net elements; the basis for regeneration is rather stored in epithelial cells and in their interactions. Phenomenological data, provided in the XVIII-XX centuries, allowed to propose several theoretical models of pattern regulation in hydra. The main goal of this paper is to review contemporary models of morphogenesis and patterning in the hydroid polyps.  相似文献   

10.
Cell proliferation, cell death, and pattern formation are coordinated in animal development. Although many proteins that control cell proliferation and apoptosis have been identified, the means by which these effectors are linked to the patterning machinery remain poorly understood. Here, we report that the bantam gene of Drosophila encodes a 21 nucleotide microRNA that promotes tissue growth. bantam expression is temporally and spatially regulated in response to patterning cues. bantam microRNA simultaneously stimulates cell proliferation and prevents apoptosis. We identify the pro-apoptotic gene hid as a target for regulation by bantam miRNA, providing an explanation for bantam's anti-apoptotic activity.  相似文献   

11.
The root endodermis is the cylindrical boundary that separates the inner vascular tissue from the outer cortex and functions as an apoplasmic barrier for selective nutrient uptake. Recent developmental and cell biological studies have started to reveal the mechanisms by which this single cell layer serves as a key regulatory module of root growth, tissue patterning and nutrient flow, which in concert support the plant’s ability to survive in a terrestrial habitat. This review provides an overview of the key factors that contribute to the functioning of the root endodermis and discusses how this single cell layer dictates root growth and tissue patterning.  相似文献   

12.

Background  

The developing mouse limb is widely used as a model system for studying tissue patterning. Despite this, few references are available that can be used for the correct identification of developing limb structures, such as muscles and tendons. Existing textual references consist of two-dimensional (2D) illustrations of the adult rat or mouse limb that can be difficult to apply when attempting to describe the complex three-dimensional (3D) relationship between tissues.  相似文献   

13.
Abstract Mulga (Acacia aneura Mimosaceae) and spinifex (Triodia spp. Poaceae) habitats together characterize a large part of arid central Australia. Often very abrupt boundaries form between these two habitats, giving rise to a mosaic pattern of contrasting shrub‐grass alterations across the landscape. Reasons for such patterning remain poorly understood though current niche‐based views relate species' distributions to spatial resource gradients or to fire effects. Field survey work was conducted on central Australian mountain ranges to further quantify floristic, regeneration traits, and structural patterning across mulga‐spinifex transitions and to test resource‐ and disturbance‐models that explain these patterns. Compositional analysis demonstrated variability in transition type – in certain cases boundaries denoted true floristic discontinuity and in others, somewhat more of a structural shift. Moreover, it was shown that minimal between‐habitat floristic overlap coincided with the occurrence of distinct edaphic changes, while greater compositional commonality occurred when soil gradients were more diffuse. This indicated that floristic patterning cannot be ascribed to any one single process. In the case of strong soil gradients, between‐habitat segregation most likely resulted from resource‐based niche differentiation; for weaker gradients, fire‐frequency assumed greatest importance. Disturbance theory most readily accounted for the distribution of woody species' post‐fire regeneration traits across habitat boundaries. The results also suggested that biotic factors –viz competition, facilitation and animal‐mediated dispersal – may be of additional consequence for mulga‐spinifex coexistence. Overall, the study served to emphasize the importance of multi‐factor explanation for within‐ and between‐habitat patterning in these mosaics. It also highlighted the need for experimentation to facilitate distinction between cause and correlation.  相似文献   

14.
A dynamic simulation model of tissue growth and cell patterning   总被引:1,自引:0,他引:1  
The distributions of cells in tissues of experimental chimaeras and mosaics can serve as tests of mechanisms and rules by which single cells organize themselves into complex, multicellular structures during embryogenesis. We have devised a dynamic, computer simulation model of tissue growth and cell patterning which is directly applicable to the analysis of chimaeras and mosaics. In the model, schematized cells possess a small behavioral repertoire and simple rules for the carrying out of these behaviors. Populations of such cells evolve tissue patterns in real-time that are very similar to those seen in experimental animals. In particular, we have modeled the major pattern features seen in amphibian and mammalian eye chimaeras and mosaics. We have demonstrated that cell mixing can be a passive concomitant of interstitial cell division, a result which alleviates the need to postulate active cell mixing in such mammalian systems. We expect this approach to be a valuable addition to methods of pattern analysis in development.  相似文献   

15.
Differentiation in plant epidermal cells   总被引:6,自引:0,他引:6  
The plant epidermis is a multifunctional tissue playing important roles in water relations, defence and pollinator attraction. This range of function is performed by a number of different types of specialized cells, which differentiate from the early undifferentiated epidermis in adaptively significant patterns and frequencies. These various cells show different degrees of morphological specialization, but there is evidence to suggest that even the less specialized cell types may require certain signals to ensure their correct differentiation and patterning. Epidermal cells may potentially adopt certain fates through a cell lineage based mechanism or a cell interaction mechanism. Work on stomatal development has focused on the cell lineage mechanism and work on trichome differentiation has focused on the cell interaction model. Recent work on the Arabidopsis trichome suggests that interactions between neighbouring cells reinforce initial differences, possibly in levels of gene expression or cell cycle stage, to commit cells to different developmental programmes. In this review these mechanisms are explored in a number of specialized cell types and the further interactions between different developmental programmes are analysed. It is in these interactions between differentiating cells adopting different cell fates that the key to the patterning of a multifunctional tissue must lie.  相似文献   

16.
Specialized groups of cells known as organizers govern the establishment of cell type diversity across cellular fields. Segmental patterning within the Drosophila embryonic epidermis is one paradigm for organizer function. Here cells differentiate into smooth cuticle or distinct denticle types. At parasegment boundaries, cells expressing Wingless confront cells co-expressing Engrailed and Hedgehog. While Wingless is essential for smooth cell fates, the signals that establish denticle diversity are unknown. We show that wg mutants have residual mirror-symmetric pattern that is due to an Engrailed-dependent signal specifying anterior denticle fates. The Engrailed-dependent signal acts unidirectionally and Wg activity imposes this asymmetry. Reciprocally, the Engrailed/Hedgehog interface imposes asymmetry on Wg signaling. Thus, a bipartite organizer, with each signal acting essentially unidirectionally, specifies segmental pattern.  相似文献   

17.
《Fly》2013,7(3):241-245
The subdivision of proliferating tissues into groups of non-intermingling sets of cells, termed compartments, is a common process of animal development. Signaling between adjacent compartments induces the local expression of morphogens that pattern the surrounding tissue. Sharp and straight boundaries between compartments stabilize the source of such morphogens during tissue growth and, thus, are of crucial importance for pattern formation. Signaling pathways required to maintain compartment boundaries have been identified, yet the physical mechanisms that maintain compartment boundaries remained elusive. Recent data now show that a local increase in actomyosin-based mechanical tension on cell bonds is vital for maintaining compartment boundaries in Drosophila.  相似文献   

18.
Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development.  相似文献   

19.
Epithelial tissues develop planar polarity that is reflected in the global alignment of hairs and cilia with respect to the tissue axes. The planar cell polarity (PCP) proteins form asymmetric and polarized domains across epithelial junctions that are aligned locally between cells and orient these external structures. Although feedback mechanisms can polarize PCP proteins intracellularly and locally align polarity between cells, how global PCP patterns are specified is not understood. It has been proposed that the graded distribution of a biasing factor could guide long-range PCP. However, we recently identified epithelial morphogenesis as a mechanism that can reorganize global PCP patterns; in the Drosophila pupal wing, oriented cell divisions and rearrangements reorient PCP from a margin-oriented pattern to one that points distally. Here, we use quantitative image analysis to study how PCP patterns first emerge in the wing. PCP appears during larval growth and is spatially oriented through the activities of three organizer regions that control disc growth and patterning. Flattening morphogen gradients emanating from these regions does not reduce intracellular polarity but distorts growth and alters specific features of the PCP pattern. Thus, PCP may be guided by morphogenesis rather than morphogen gradients.  相似文献   

20.
Patterned scaffold surfaces provide a platform for highly defined cellular interactions, and have recently taken precedence in tissue engineering. Despite advances in patterning techniques and improved tissue growth, no clinical studies have been conducted for implantation of patterned biomaterials. Four major clinical application fields where patterned materials hold great promise are antimicrobial surfaces, cardiac constructs, neurite outgrowth, and stem cell differentiation. Specific examples include applications of patterned materials to (i) counter infection by antibiotic resistant bacteria, (ii) establish proper alignment and contractile force of regrown cardiac cells for repairing tissue damaged by cardiac infarction, (iii) increase neurite outgrowth for central nervous system wound repair, and (iv) host differentiated stem cells while preventing reversion to a pluripotent state. Moreover, patterned materials offer unique advantages for artificial implants which other constructs cannot. For example, by inducing selective cell adhesion using topographical cues, patterned surfaces present cellular orientation signals that lead to functional tissue architectures. Mechanical stimuli such as modulus, tension, and material roughness are known to influence tissue growth, as are chemical stimuli for cell adhesion. Scaffold surface patterns allow for control of these mechanical and chemical factors. This review identifies research advances in scaffold surface patterning, in light of pressing clinical needs requiring organization of cellular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号