首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
M Green  M Ishino  P M Loewenstein 《Cell》1989,58(1):215-223
The HIV-1 Tat protein is a potent trans-activator essential for virus replication. We reported previously that HIV-1 Tat peptides containing residues 37-48 (mainly region II), a possible activating region, and residues 49-57 (region III), a nuclear targeting and putative nucleic acid binding region, possess minimal but distinct trans-activator activity. The presence of residues 58-72 (region IV) greatly enhances trans-activation. We postulate that Tat mutant peptides with an inactive region II and a functional region III can behave as dominant negative mutants. We synthesized minimal domain peptides containing single amino substitutions for amino acid residues within region II that are conserved among different HIV isolates. We identify four amino acid residues whose substitution within Tat minimal domain peptides leads to defects in transactivation. Some of these mutants are trans-dominant in several peptide backbones, since they strongly inhibit trans-activation by wild-type Tat protein added to cells or expressed from microinjected plasmid. Significantly, trans-activation of integrated HIV-LTRCAT is blocked by some trans-dominant mutant peptides. These results suggest an attractive approach for the development of an AIDS therapy.  相似文献   

3.
4.
The G proteins transduce hormonal and other signals into regulation of enzymes such as adenylyl cyclase and retinal cGMP phosphodiesterase. Each G protein contains an alpha subunit that binds and hydrolyzes guanine nucleotides and interacts with beta gamma subunits and specific receptor and effector proteins. Amphipathic and secondary structure analysis of the primary sequences of five different alpha chains (bovine alpha s, alpha t1 and alpha t2, mouse alpha i, and rat alpha o) predicted the secondary structure of a composite alpha chain (alpha avg). The alpha chains contain four short regions of sequence homologous to regions in the GDP binding domain of bacterial elongation factor Tu (EF-Tu). Similarities between the predicted secondary structures of these regions in alpha avg and the known secondary structure of EF-Tu allowed us to construct a three-dimensional model of the GDP binding domain of alpha avg. Identification of the GDP binding domain of alpha avg defined three additional domains in the composite polypeptide. The first includes the amino terminal 41 residues of alpha avg, with a predicted amphipathic alpha helical structure; this domain may control binding of the alpha chains to the beta gamma complex. The second domain, containing predicted beta strands and alpha helices, several of which are strongly amphipathic, probably contains sequences responsible for interaction of alpha chains with effector enzymes. The predicted structure of the third domain, containing the carboxy terminal 100 amino acids, is predominantly beta sheet with an amphipathic alpha helix at the carboxy terminus. We propose that this domain is responsible for receptor binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Intracellular delivery of the mitochondrial F1-ATPase beta-subunit precursor from the cytoplasm into the matrix of mitochondria is prevented by deletion of its mitochondrial import signal, a basic amphipathic alpha-helix at its amino terminus. Using a complementation assay, we have selected spontaneous mutations which restore the correct in vivo localization of the protein containing the import signal deletion. Analysis of these mutations revealed that different functional surrogate mitochondrial targeting signals formed within a narrow region of the extreme amino terminus of the import signal deleted beta-subunit. These modifications specifically replace different acidic residues with neutral or basic residues to generate a less acidic amphipathic helix within a region of the protein which is accessible for interaction with the membrane surface. The observations of this study confirm the requirement for amphipathicity as part of the mitochondrial import signal and suggest how mitochondrial targeting signals may have evolved within the extreme amino terminus of mitochondrial proteins.  相似文献   

7.
The tat gene of HIV-1 is a potent trans-activator of gene expression from the HIV long terminal repeat (LTR). To define the functionally important regions of the product of the tat gene (Tat) of HIV-1, deletion, linker insertion and single amino acid substitution mutants within the Tat coding region of strain SF2 were constructed. The effect of these mutations on trans-activation was assessed by measuring the expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene linked to the HIV-LTR. These studies have revealed that four different domains of the protein that map within the N-terminal 56 amino acid region are essential for Tat function. In addition to the essential domains, an auxiliary domain that enhances the activity of the essential region has also been mapped between amino acid residues 58 and 66. One of the essential domains maps in the N-terminal 20 amino acid region. The other three essential domains are highly conserved among the various strains of HIV-1 and HIV-2 as well as simian immunodeficiency virus (SIV). Of the conserved domains, one contains seven Cys residues and single amino acid substitutions for several Cys residues indicate that they are essential for Tat function. The second conserved domain contains a Lys X Leu Gly Ile X Tyr motif in which the Lys residue is essential for trans-activation and the other residues are partially essential. The third conserved domain is strongly basic and appears to play a dual role. Mutants lacking this domain are deficient in trans-activation and in efficient targeting of Tat to the nucleus and nucleolus. The combination of the four essential domains and the auxiliary domain contribute to the near full activity observed with the 101 amino acid Tat protein.  相似文献   

8.
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.  相似文献   

9.
10.
We expressed the human immunodeficiency virus type 1 transactivator protein, Tat, in the wheat germ cell-free translation system and found it to exist as a monomer. The first coding exon (residues 1 to 72) of wheat germ-expressed Tat was resistant to trypsin digestion, indicating that it is a highly folded, independently structured protein domain. Several mutant Tat proteins were dramatically more sensitive to trypsin than the wild type was, suggesting that their reduced transactivation activities are the result of destabilized structures. Mutant proteins with single-amino-acid substitutions were also identified that had reduced transactivation activities but wild-type structures in the trypsin assay. These mutants clustered in two regions of Tat, at acidic residues 2 and 5 in the amino terminus and between residues 18 and 32. These mutants, wild type in structure but reduced in activity, identify residues in the wild-type protein that may directly contact other molecules during Tat function.  相似文献   

11.
12.
The TatA and TatB proteins are essential components of the twin arginine protein translocation pathway in Escherichia coli. C-terminal truncation analysis of the TatA protein revealed that a plasmid-expressed TatA protein shortened by 40 amino acids is still fully competent to support protein translocation. Similar truncation analysis of TatB indicated that the final 30 residues of TatB are dispensable for function. Further deletion experiments with TatB indicated that removal of even 70 residues from its C terminus still allowed significant transport. These results imply that the transmembrane and amphipathic helical regions of TatA and TatB are critical for their function but that the C-terminal domains are not essential for Tat transport activity. A chimeric protein comprising the N-terminal region of TatA fused to the amphipathic and C-terminal domains of TatB supports a low level of Tat activity in a strain in which the wild-type copy of either tatA or tatB (but not both) is deleted.  相似文献   

13.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function. The first region is the interdomain hinge between the transmembrane and the amphipathic alpha-helices of TatA and TatB proteins. The second region is within the amphipathic helices of TatA and TatB. In particular an invariant phenylalanine residue within TatA proteins is essential for activity, whereas a string of glutamic acid residues on the same face of the amphipathic helix of TatB is important for function.  相似文献   

14.
Site-directed mutagenesis was used to identify functional domains present within the human immunodeficiency virus (HIV) tat protein. Transient cotransfection experiments showed that derivatives of tat protein with amino acid substitutions either at the amino-terminal end or at cysteine residue 22, 37, 27, or 25 were no longer able to transactivate HIV long terminal repeat-directed gene expression. Incubation of Tat expressed in Escherichia coli with zinc demonstrated that both authentic Tat and cysteine mutation derivatives could form metal-protein complexes. The tat proteins that contained alterations within the cluster of positively charged amino acid residues retained their ability to transactivate gene expression, albeit at markedly reduced levels. Indirect immunofluorescence showed that the authentic tat protein and the amino-terminal and cysteine substitution mutants all localized in the nucleus, with accumulation being most evident in the nucleolus. In contrast, nuclear accumulation was greatly reduced with the basic-substitution mutations. Consistent with this result, a fusion protein that contained amino acids GRKKR, derived from the basic region, fused to the amino-terminal end of beta-galactosidase also accumulated within the nucleus. These results demonstrate that the 14-kilodalton tat protein contains at least three distinct functional domains affecting localization and transactivation.  相似文献   

15.
The amino acid sequence of the 216-residue-long N-terminal aggregation and cross-linking 7S domain of the alpha 1 (IV) chain of human placental basement membrane collagen is presented. The N terminus of the alpha 1 (IV) chain starts with a non-triple-helical region, which is at least 15 residues long and contains four cysteine and two lysine residues as putative cross-linking sites. This segment is followed by a 120-residue-long triple helical region, which contains the unusual occurrence of a cysteine residue in the Xaa position of a Gly-Xaa-Yaa triplet. Since individual molecules in the 7S domain are associated in an antiparallel manner, this cysteine probably aligns with one of the four cysteines in the amino-terminal end of an adjacent molecule, forming an intermolecular disulfide bridge. The length of the overlap of two adjacent molecules is estimated to be about 110 residues. The triple helix adjacent to the overlap zone is interrupted by a 10-residue-long non-helical area, which is probably responsible for the flexible region of the molecules in the neighbourhood of the overlap zone observed in the electron microscope. The mode of aggregation of the 7S domain, the formation of intermolecular cross-links as well as the relatively high stability of this region against proteolytic attack are discussed in the light of the elucidated amino acid sequence.  相似文献   

16.
《The Journal of cell biology》1990,111(5):1987-2003
We have generated a set of amino- and carboxy-terminal deletions of the neurofilament NF-M gene and determined the molecular consequences of forced expression of these mutant constructs in mouse fibroblasts. To follow the expression of mutant NF-M subunits in transfected cells, a 12 amino acid epitope (from the human c-myc protein) was expressed at the carboxy terminus of each mutant. We show that NF-M molecules missing up to 90 or 70% of the nonhelical carboxy-terminal tail or amino-terminal head domains, respectively, incorporate readily into an intermediate filament network comprised either of vimentin or NF-L, whereas deletions into either the amino- or carboxy-terminal alpha- helical rod region generate assembly-incompetent polypeptides. Carboxy- terminal deletions into the rod domain invariably yield dominant mutants which rapidly disrupt the array of filaments comprised of NF-L or vimentin. Accumulation of these mutant NF-M subunits disrupts vimentin filament arrays even when present at approximately 1% the level of the wild-type subunits. In contrast, the amino-terminal deletions into the rod produce pseudo-recessive mutants that perturb the wild-type NF-L or vimentin arrays only modestly. The inability of such amino-terminal mutants to disrupt wild-type subunits defines a region near the amino-terminal alpha-helical rod domain (residues 75- 126) that is required for the earliest steps in filament assembly.  相似文献   

17.
18.
The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.  相似文献   

19.
20.
Escherichia coli strain KF148(SD-) defective in translation of the uncC gene for the epsilon subunit of H(+)-ATPase could not support growth by oxidative phosphorylation due to lack of F1 binding to Fo (M. Kuki, T. Noumi, M. Maeda, A. Amemura, and M. Futai, 1988, J. Biol. Chem. 263, 17, 437-17, 442). Mutant uncC genes for epsilon subunits lacking different lengths from the amino terminus were constructed and introduced into strain KF148(SD-). F1 with an epsilon subunit lacking the 15 amino-terminal residues could bind to F0 in a functionally competent manner, indicating that these amino acid residues are not absolutely necessary for formation of a functional enzyme. However, mutant F1 in which the epsilon subunit lacked 16 amino-terminal residues showed defective coupling between ATP hydrolysis (synthesis) and H(+)-translocation, although the mutant F1 showed partial binding to Fo. These findings suggest that the epsilon subunit is essential for binding of F1 to F0 and for normal H(+)-translocation. Previously, Kuki et al. (cited above) reported that 60 residues were not necessary for a functional enzyme. However, the mutant with an epsilon subunit lacking 15 residues from the amino terminus and 4 residues from the carboxyl terminus was defective in oxidative phosphorylation, suggesting that both terminal regions affect the conformation of the region essential for a functional enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号