首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

2.
[3H]yohimbine, a potent and selective alpha 2-adrenergic antagonist was used to label alpha-adrenoceptors in intact human lymphocytes. Binding of [3H]yohimbine was rapid (t1/2 1.5 -2.0 min) and readily reversed by 10 microM phentolamine (t1/2 = 5 - 6 min) and of high affinity (Kd = 3.7 +/- 0.86 nM). At saturation, the total number of binding sites was 19.9 +/- 5.3 fmol/10(7) lymphocytes. Adrenergic agonists competed for [3H]yohimbine binding sites with an order of potency: clonidine greater than (-) epinephrine greater than (-) norepinephrine greater than (+) epinephrine much greater than (-) isoproterenol; adrenergic antagonists with a potency order of yohimbine greater than phentolamine greater than prazosin. These results indicate the presence of alpha 2-adrenoceptors in human lymphocytes.  相似文献   

3.
The full agonist [3H]UK 14304 [5-bromo-6-(2-imidazolin-2-yl-amino)-quinoxaline] was used to characterize alpha 2-adrenoceptors in postmortem human brain. The binding at 25 degrees C was rapid (t1/2, 4.6 min) and reversible (t1/2, 14.1 min), and the KD determined from the kinetic studies was 0.48 nM. In frontal cortex, the rank order of potency of adrenergic drugs competing with [3H]UK 14304 or [3H]clonidine showed the specificity for an alpha 2A-adrenoceptor: UK 14304 approximately equal to yohimbine approximately equal to oxymetazoline approximately equal to clonidine greater than phentolamine approximately equal to (-)-adrenaline greater than idazoxan approximately equal to (-)-noradrenaline greater than phenylephrine greater than (+/-)-adrenaline much greater than corynanthine greater than prazosin much greater than (+/-)-propranolol. GTP induced a threefold decrease in the affinity of [3H]UK 14304, with no alteration in the maximum number of binding sites, suggesting that the radioligand labelled the high-affinity state of the alpha 2-adrenoceptor. In the frontal cortex, analyses of saturation curves indicated the existence of a single population of noninteracting sites for [3H]UK 14304 (KD = 0.35 +/- 0.13 nM; Bmax = 74 +/- 9 fmol/mg of protein). In other brain regions (hypothalamus, hippocampus, cerebellum, brainstem, caudate nucleus, and amygdala) the Bmax ranged from 68 +/- 7 to 28 +/- 4 fmol/mg of protein. No significant changes in the KD values were found in the different regions examined. The binding of [3H]UK 14304 was not affected by age, sex or postmortem delay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The IC50 value for inhibition of specific [3H]yohimbine binding to rat cerebral cortical membranes by clonidine was increased, and the Hill coefficient (nH) approached unity in the presence of 150 microM GTP. Pretreatment of membranes with islet-activating protein (IAP) in the presence of NAD caused an increase in IC50 and nH values for clonidine compared with control membranes in the absence of GTP, the addition of which was without effect. Scatchard analysis showed that the Bmax value of the high-affinity component in [3H]clonidine binding was decreased by pretreatment with IAP/NAD. GTP in a concentration range of 0.1 microM-1 mM caused a significant elevation of [3H]yohimbine binding. In IAP/NAD-pretreated membranes, however, [3H]yohimbine binding was no longer affected by GTP, although IAP/NAD significantly (p less than 0.01) increased [3H]yohimbine binding compared to control. IAP ADP-ribosylated 41,000 dalton proteins of cerebral cortical membranes. From these results, it can be suggested that inhibitory guanine nucleotide regulatory protein with Mr 41,000 couples to alpha 2-adrenoceptors to regulate binding affinity of agonists and antagonists in membranes of the rat cerebral cortex.  相似文献   

5.
Membranes prepared from either neuronal or glial cultures contain alpha 2-adrenergic receptors as determined by the characteristics of [3H]yohimbine [( 3H]YOH) binding. The binding was rapid, reversible, saturable, dependent on the protein concentration used, and reached equilibrium by 5 min in membranes from both neuronal and glial cultures. Scatchard analyses of saturation isotherms revealed similar KD values of 13.7 +/- 1.35 nM (n = 10) for neuronal cultures and 18.42 +/- 2.34 nM (n = 10) for glial cultures. Glial cultures contained many more binding sites for [3H]YOH than neuronal cultures, having a Bmax of 1.6 +/- 0.33 pmol/mg protein (n = 10) compared with 0.143 +/- 0.018 pmol/mg protein (n = 10) in neurons. Drugs selective for alpha 2-adrenergic receptors were the most effective displacers of [3H]YOH binding in both neuronal and glial cultures, i.e., the alpha 2-adrenergic antagonists rauwolscine and yohimbine were better displacers than the other catecholamine antagonists prazosin, corynanthine, or propranolol. The agonists showed the same pattern with the alpha 2-selective drugs clonidine and naphazoline being the most effective competitors for the [3H]YOH site. GTP and its nonhydrolyzable analog. 5'-guanylyl-imidodiphosphate, were able to lower the affinity of the alpha 2-receptors for agonists but not antagonists in membranes from both neuronal and glial cultures, suggesting that the receptors are linked to a G protein in both cell types. The presence of alpha 2-adrenergic receptors in neuronal cultures was also substantiated by light microscopic autoradiography of [3H]YOH binding. In summary, we have demonstrated that both neuronal and glial cultures contain alpha 2-adrenoceptors.  相似文献   

6.
Using ligand binding techniques, we studied alpha-adrenergic receptors in brains obtained at autopsy from seven histologically normal controls and seven patients with histopathologically verified Alzheimer-type dementia (ATD). Binding of the alpha-adrenergic antagonists [3H]prazosin and [3H]yohimbine to membranes of human brains exhibited characteristics compatible with alpha 1- and alpha 2-adrenergic receptors, respectively. Binding of both ligands was saturable and reversible, with dissociation constants of 0.15 nM for [3H]prazosin and 5.5 nM for [3H]yohimbine. [3H]Prazosin binding was highest in the hippocampus and frontal cortex and lowest in the caudate and putamen in the control brains. [3H]Yohimbine binding was highest in the nucleus basalis of Meynert (NbM) and frontal cortex and lowest in the caudate and cerebellar hemisphere in the control brains. Compared with values for the controls, [3H]prazosin binding sites were significantly reduced in number in the hippocampus and cerebellar hemisphere, and [3H]yohimbine binding sites were significantly reduced in number in the NbM in the ATD brains. These results suggest that alpha 1- and alpha 2-adrenergic receptors are present in the human brain and that there are significant changes in numbers of both receptors in selected regions in patients with ATD.  相似文献   

7.
1. Presynaptic alpha 2-adrenoceptor mechanisms in electrically stimulated longitudinal muscles of ilea isolated from 3, 10, 20 and 47 week-old guinea pigs were studied by analysis of the concentration-response curves of noradrenaline, a full agonist, and clonidine, a partial agonist, and the Scatchard plot of specific binding of [3H]-p-aminoclonidine to synaptosomal fractions from the longitudinal muscle of guinea pig ileum. 2. The pD2 value of noradrenaline and the maximum contraction induced by clonidine increased with age from 3 to 20 weeks and there after decreased to 47 weeks, while the pA2 value of yohimbine against noradrenaline did not alter with age. 3. The capacity of the maximum binding sites of [3H]-p-aminoclonidine increased with increasing age (3-20 weeks), while the dissociation constant (Kd) of [3H]-p-aminoclonidine did not change during the same period. 4. The changes in the presynaptic alpha 2-adrenoceptor mechanisms with age are considered to be due to the change in the total concentration of presynaptic of alpha 2-adrenoceptors.  相似文献   

8.
We investigated the effect of amiloride on alpha-adrenoreceptors (alpha 1 and alpha 2) using radioligand binding techniques. Amiloride inhibited [3H]yohimbine and [3H]prazosin binding to alpha 2- and alpha 1-adrenoreceptors, respectively, from various tissues in a concentration-dependent manner. Amiloride was approximately 9-12 times more potent in inhibiting [3H]yohimbine binding to alpha 2-adrenoreceptors from rat tissues than from other mammalian tissues. However, it had almost the same potency in inhibiting [3H]prazosin binding to alpha 1-adrenoreceptors from rat as well as other mammalian tissues. Further, in rat tissues, amiloride was approximately 10 times more potent in inhibiting [3H]yohimbine than [3H]prazosin binding. Amiloride inhibited [3H]yohimbine binding noncompetitively and [3H]prazosin binding competitively. The inhibition of [3H]yohimbine and [3H]prazosin binding by amiloride was reversible. Since amiloride has been shown to be an inhibitor of Na+-H+ exchanger protein, we believe that it regulates the alpha 2-adrenoreceptors by binding to Na+ -H+ exchanger protein. Triamterene, a compound similar to amiloride in regard to diuretic effect, had very little effect on [3H]yohimbine and [3H]prazosin binding to rat kidney membranes, suggesting that the alpha-adrenoreceptor antagonistic properties of amiloride are not related to its antikaliuretic effect. The results of the present study suggest that some of the pharmacological actions of amiloride (antihypertensive and diuretic effects) can be explained in part by its regulatory effect on both alpha 1- and alpha 2-adrenoreceptors.  相似文献   

9.
The changes of [3H]yohimbine and [3H]clonidine binding sites in rat vas deferens on treatments with adenosine receptor agonists (2-chloroadenosine, adenosine) or reserpine were examined. Treatment with adenosine agonist in vitro increased [3H]clonidine binding sites but had no influence on affinity and number of binding sites of α2-antagonist, [3H]yohimbine. Amount of [3H]yohimbine binding sites was found to be higher than that of [3H]clonidine with or without the treatment. Inhibition curves of α2-agonists, clonidine and norepinephrine, on [3H]yohimbine binding were less than unity though α2-antagonist inhibited with about 1.0 of nH. The treatment with adenosine agonist reduced the IC50 value of agonists on the [3H]yohimbine binding but had no influence on the inhibitory effect of antagonist. These effect of adenosine agonists was completely blocked by theophylline. Accordingly it was considered that activation of adenosine receptor caused configurational change in α2-adrenergic receptor from low affinity state for agonist to the high affinity state, though both states had same affinity for antagonist.On the other hand, treatment with reserpine in vivo increased the affinity of clonidine for α2-adrenergic receptors and also increased the amount of the α2-receptors.  相似文献   

10.
alpha 2-Adrenergic receptors recognize a number of molecules with diverse chemical structures, including the yohimban diastereoisomers yohimbine and rauwolscine, catecholamines, guanidinium analogs, and imidazolines, such as clonidine. The affinity of the receptor protein for some of these ligands can vary by 10-100-fold among various tissues and species, suggesting a heterogeneous class of binding sites. Certain cellular effects elicited by the compounds possessing an imidazoline or guanidinium moiety may actually be mediated by a membrane receptor distinct from the alpha 2-adrenergic receptor. To determine whether this imidazoline/guanidinium receptive site (IGRS) and the alpha 2-adrenergic receptor represent distinct proteins, we solubilized and partially characterized the two binding sites in rabbit kidney. This tissue expresses both alpha 2-adrenergic receptors and high affinity imidazoline/guanidinium binding sites, the latter which are rauwolscine-insensitive but can be identified with the benzodioxan [3H]idazoxan. The IGRS and alpha 2-adrenergic receptor in rabbit kidney exhibit distinct ligand recognition properties, which are maintained after solubilization and partial purification. In addition, the two receptors can be physically separated by heparin-agarose or lectin affinity chromatography indicating that the two binding sites are distinct entities. [3H]Idazoxan binding is trypsin-sensitive, indicating that the IGRS is a protein rather than a lipid component of the plasma membrane. [3H]Idazoxan binding is not inhibited by endogenous agonists for known neurotransmitter receptors. However, the IGRS does recognize clonidine-displacing substance, a small non-catechol compound isolated from calf brain, suggesting the existence of a previously uncharacterized hormonal/neurotransmitter receptor system.  相似文献   

11.
The effects of a chronic treatment with L-triiodothyronine (T3; 100 mg/rat/day s.c. for 7 days) or with propylthiouracil (PTU; 50 mg/rat/day for 35 days by stomach tube) on the characteristics of alpha 1, alpha 2, beta, imipramine and GABA binding sites in different brain areas of the adult rat have been studied. T3-treatment caused an increase in the number of [3H]dihydroalprenolol and a decrease in the number of [3H]muscimol binding sites in the cerebral cortex. PTU-treatment caused a decrease in the number of [3H]prazosin, [3H]yohimbine and [3H]dihydroalprenolol binding sites in the cerebral cortex, while the number of [3H]imipramine binding sites was reduced in the cerebral cortex and hypothalamus, and increased in the hippocampus. Affinity constants were never modified. Concurrent experiments showed that the "in vitro" addition of T3 and PTU did not influence the binding of any of the ligands employed to control rat brain membranes. The present data further support the view that neurotransmission in the CNS is influenced by the thyroid status.  相似文献   

12.
1. Alpha 2-Adrenoceptor antagonists [3H]yohimbine and [3H]RX 781094 and the partial alpha 2-agonist [3H]clonidine exhibited specific binding to plasma membrane fragments isolated from interscapular brown fat of 7-day-old rats. 2. Competition studies with epinephrine, yohimbine and practolol revealed that [3H]norepinephrine, the principal in vivo agonist acting upon brown adipocytes, can readily bind to alpha 2-adrenoceptors in brown fat of infant rats. 3. The presence of alpha 2-adrenoceptor subclass in brown fat of infant rats may play a role in the sympathetic regulation of this rapidly proliferating tissue.  相似文献   

13.
The gene for an alpha 2-adrenergic receptor has been cloned from a porcine genomic library, using as a probe a 0.95-kilobase Pst fragment of the gene for the human platelet alpha 2-adrenergic receptor. The identity of the cloned porcine gene was confirmed initially on the basis of partial amino acid sequence information obtained following cyanogen bromide digestion of homogeneous preparations of porcine brain alpha 2-adrenergic receptors. The deduced amino acid sequence for the porcine receptor, when compared to other members of the family of guanine nucleotide-binding protein-coupled receptors, shares the same overall structural characteristics and most closely resembles the human platelet C10 alpha 2-adrenergic receptor (greater than 93% homology). The putative porcine alpha 2-receptor gene was expressed in the COS-M6 cell line. Transfected cells display saturable [3H]yohimbine binding. The KD for [3H]yohimbine, determined in digitonin-solubilized preparations, is 5.8 nM. The selectivity of agonists and antagonists in competing for [3H]yohimbine binding to membranes prepared from the transfected cells is characteristic of the alpha 2A subtype of adrenergic receptors. The porcine alpha 2-receptor also was expressed permanently in LLC-PK1 porcine kidney cells at a level of 100 pmol/mg protein. The alpha 2-agonist UK14304 is able to attenuate forskolin or vasopressin-stimulated cAMP accumulation by at least 50% in these cells. Allosteric modulation of [3H] yohimbine binding by Na+, H+, and 5-amino-substituted analogs of amiloride also was demonstrated for the alpha 2-receptor expressed in COS-M6 cells. Moreover, these modulatory effects were quantitatively similar to those observed for homogeneous preparations of the alpha 2-receptor purified from porcine brain cortex. Retention of the effects of cations and amiloride analogs in transiently expressed alpha 2-receptors supports the interpretation that the allosteric sites for these agents reside in the alpha 2-receptor molecule itself.  相似文献   

14.
To investigate presynaptic effects of hexachlorocyclohexane (HCH) isomers, the release of noradrenaline (NA) in brain tissue was analyzed using rat cerebral cortical slices preloaded with [3H]-NA. gamma-HCH (lindane) 50 microM significantly enhanced the [3H]-NA release evoked by 15-25 mM K+. alpha- and beta-HCH (50 microM) did not produce any significant effect on K(+)-evoked [3H]-NA release. delta-HCH (50 microM) induced a significant decrease of the 25 mM K(+)-evoked release of [3H]-NA. The effect of the gamma- and delta-HCH isomers on the presynaptic action of the alpha 2-agonist clonidine and the alpha 2-antagonist yohimbine was also studied. The presynaptic inhibitory effect of clonidine and the stimulatory effect of yohimbine on [3H]-NA release was attenuated by lindane and delta-HCH, respectively. These results are consistent with a presynaptic action of the HCH isomers on noradrenergic release processes.  相似文献   

15.
The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. [3H]Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, [3H]Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.  相似文献   

16.
G Simon  J Filep  T Zelles 《Life sciences》1990,47(22):2021-2025
Alpha adrenergic agonists and antagonists as clonidine, guanfacine, yohimbine, phenylephrine and prazosin inhibited the [3H]-QNB binding to rat brain cortex muscarinic acetylcholine receptor (mAChR, M-1 subtype), heart (M-2 subtype) and parotid gland homogenate (M-3 subtype) in a dose-dependent competitive fashion. Ki values were between 10(-6) and 10(-3) M. Hill coefficients were about 1. No correlation was found between mAChR inhibiting capacity of these drugs and their activity on alpha adrenergic receptors. In contrast, other transmitters, as dopamine, GABA, glutamic acid, histamine, serotonin, isoproterenol and platelet activating factor (PAF) did not affect the QNB binding.  相似文献   

17.
A. Bobik 《Life sciences》1982,30(3):219-228
Binding of the alpha adrenergic antagonists (3H) prazosin and (3H) yohimbine to membranes of dog arteries exhibit the characteristics expected of alpha adrenoceptors. Binding of both ligands is saturable with dissociation constants of 0.19nM and 1.15nM for (3H) prazosin and (3H) yohimbine respectively. A series of catecholamines inhibit binding of both ligands with a potency in the order epinephrine > norepinephrinea?isoproterenol, corresponding with the activity of these agents at alpha adrenoceptors in blood vessels. Competition for binding in both instances is stereoselective. ?-Phenylephrine has similar potencies in inhibiting (3H) prazosin and (3H) yohimbine specific binding whilst the imidazoline related partial alpha adrenergic agonists clonidine and guanfacine are more potent in inhibiting (3H) yohimbine specific binding. The affinity of prazosin for the (3H) yohimbine binding site is approximately 2500 times less than for the (3H) prazosin site whilst yohimbine is approximately 150 times more potent in inhibiting (3H) yohimbine than (3H) prazosin specific binding. Non-selective alpha adrenergic antagonists have similar affinities for both binding sites. The concentrations of (3H) yohimbine binding sites in different arteries vary about two fold whilst for (3H) prazosin the variation was about three fold. These results indicate that there are two discrete noradrenergic binding sites in the major arteries of dog which have binding properties expected of alpha1 and alpha2 adrenoceptors.  相似文献   

18.
P M Ferron  W Banner  S P Duckles 《Life sciences》1984,35(21):2169-2176
In order to explore the characteristics of alpha adrenergic receptors on cerebrovascular smooth muscle, specific binding sites for the alpha 1 adrenergic ligand, (3H) prazosin, were studied in blood vessel homogenates. No specific (3H) prazosin binding was found in either rabbit or dog cerebral arteries, but specific binding was demonstrated in the rabbit saphenous and ear arteries. In the ear artery 3H-prazosin binding was saturable with a Kd of 0.51 +/- 0.20 nM and a Bmax of 89 +/- 29 fmoles/mg protein. To confirm the adequacy of our membrane preparation, homogenates of both dog and rabbit cerebral arteries showed saturable specific binding with two different ligands: one for muscarinic receptors, [3H](-) quinuclidinyl benzilate (QNB) and one for alpha 2 adrenergic receptors, (3H) yohimbine. The results of these studies demonstrate a lack of alpha 1 adrenergic receptors on cerebral blood vessels, confirming functional studies showing only a weak contractile response to norepinephrine.  相似文献   

19.
KCl (16 mM) stimulated the release of [3H]noradrenaline ([3H]NA) from rat hypothalamic synaptosomes in a Ca2+-dependent manner; this release was attenuated by clonidine (0.01-100 microM). Changes in the release of [3H]NA and the functional status of alpha 2-adrenoceptors in the medial hypothalamus of rats treated acutely and chronically with clorgyline (1 mg/kg/day) or desipramine (DMI, 10 mg/kg/day) were assessed using superfused synaptosomes in which the attenuating effects of clonidine (1 microM) or the potentiating effects of yohimbine (1 microM) on K+-evoked release of [3H]NA were measured. After acute administration of DMI, significantly less [3H]NA was accumulated into synaptosomes. Although total (spontaneous + K+-evoked) [3H]NA release from these synaptosomes was unchanged, a significant reduction was apparent in the K+-evoked release from the DMI-treated tissue. Attenuation of K+-evoked release by clonidine was abolished in both these acute treatment groups. Following the chronic antidepressant drug regimens, [3H]NA uptake into DMI-treated tissue remained significantly reduced although total percent and K+-evoked [3H]NA release were unchanged. The K+-evoked release of [3H]NA in S1 was significantly enhanced (by 22%) in the clorgyline treatment group. Attenuation of K+-evoked [3H]NA release by clonidine in both chronic antidepressant-treated tissues was not significantly changed. It is concluded that the functional sensitivity of alpha 2-adrenoceptors on nerve endings in the medial hypothalamus is unchanged by these chronic antidepressant drug regimens. In synaptosomes from untreated tissue, yohimbine significantly potentiated K+-evoked release of [3H]NA; this effect was unchanged after acute regimens and reduced after chronic administration of both the antidepressants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We previously demonstrated that nonesterified as well as esterified eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) inhibit U46619-induced platelet aggregation and [3H]U46619 specific binding to washed human platelets. It was also demonstrated that esterification of these fatty acids resulted in a decrease in the affinity of [3H]U46619 for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor. In order to investigate the specificity of this inhibition, the effects of 20:5n-3 and 22:6n-3 on the function and binding of the platelet alpha 2-adrenergic receptor were studied. It was found that neither 20:5n-3 nor 22:6n-3 (nonesterified or esterified) altered epinephrine-induced aggregation or [3H]yohimbine specific binding. Moreover, Scatchard analysis revealed that esterification with either 20:5n-3 or 22:6n-3 did not alter the dissociation constant for [3H]yohimbine binding. Modulation of the TXA2/PGH2 receptor by 20:5n-3 and 22:6n-3 was next evaluated using CHAPS- and digitonin-solubilized platelet membranes. [3H]SQ29,548 dissociation constants of 26.5 nM and 20.8 nM were measured for CHAPS and digitonin-solubilized membranes, respectively. Competitive binding experiments in these solubilized preparations revealed that 20:5n-3 or 22:6n-3 blocked [3H] SQ29,548 binding with IC50 values in the range of 6-15 microM, while concentrations of these fatty acids of up to 100 microM showed no effect on [3H]yohimbine binding. On the other hand, the IC50 values for inhibition of [3H] SQ29,548 binding by linoleic acid (18:2n-6) and gamma-linolenic acid (18:3n-6) were in the range of 150 microM. Furthermore, 18:2n-6 and 18:3n-6 showed similar inhibitory effects on [3H]yohimbine binding. Finally, competition binding studies performed in a partially purified TXA2/PGH2 receptor preparation also demonstrated inhibition of [3H]SQ29,548 binding by 20:5n-3 and 22:6n-3. Collectively, these findings support the notion that 20:5n-3 and 22:6n-3 can selectively and directly modulate TXA2/PGH2 receptor function, and that this mechanism of action may contribute to the antiplatelet activity associated with diets rich in these fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号