首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

2.
In immunodeficient hosts, Epstein-Barr virus (EBV) often induces extensive B-cell lymphoproliferative disease and lymphoma. Without effective in vitro immune surveillance, B cells infected by the virus readily form immortalized cell lines. In the regression assay, memory T cells inhibit the formation of foci of EBV-transformed B cells that follows recent in vitro infection by EBV. No one has yet addressed which T cell regulates the early proliferative phase of B cells newly infected by EBV. Using new quantitative methods, we analyzed T-cell surveillance of EBV-mediated B-cell proliferation. We found that CD4+ T cells play a significant role in limiting proliferation of newly infected, activated CD23+ B cells. In the absence of T cells, EBV-infected CD23+ B cells divided rapidly during the first 3 weeks after infection. Removal of CD4+ but not CD8+ T cells also abrogated immune control. Purified CD4+ T cells eliminated outgrowth when added to EBV-infected B cells. Thus, unlike the killing of EBV-infected lymphoblastoid cell lines, in which CD8+ cytolytic T cells play an essential role, prevention of early-phase EBV-induced B-cell proliferation requires CD4+ effector T cells.  相似文献   

3.
Transfer of naive CD4 T cells into lymphopenic mice initiates a proliferative response of the transferred cells, often referred to as homeostatic proliferation. Careful analysis reveals that some of the transferred cells proliferate rapidly and undergo robust differentiation to memory cells, a process we have designated spontaneous proliferation, and other cells proliferate relatively slowly and show more limited evidence of differentiation. In this study we report that spontaneous proliferation is IL-7 independent, whereas the slow proliferation (referred to as homeostatic proliferation) is IL-7 dependent. Administration of IL-7 induces homeostatic proliferation of naive CD4 T cells even within wild-type recipients. Moreover, the activation/differentiation pattern of the two responses are clearly distinguishable, indicating that different activation mechanisms may be involved. Our results reveal the complexity and heterogeneity of lymphopenia-driven T cell proliferation and suggest that they may have fundamentally distinct roles in the maintenance of CD4 T cell homeostasis.  相似文献   

4.
Transient TCR stimulation induces multiple rounds of CD8 T cell division without further requirement for Ag. The mechanism driving Ag-independent proliferation, however, remains unclear. In this study, we show that the initial duration of TCR stimulation positively correlates with the number of divisions that CD8 T cells subsequently undergo. We find that increased periods of Ag stimulation result in enhanced CD25 up-regulation and greater IL-2 production by CD8 T cells. Depletion of IL-2 from T cell cultures with specific Abs dramatically impairs programmed proliferation. Consistent with this result, IL-2-deficient T cells undergo markedly attenuated Ag-independent proliferation in vitro. Although IL-2 production by stimulated CD8 T cells appears to be essential for in vitro proliferation, upon transfer into recipient mice, IL-2-deficient CD8 T cells undergo extensive proliferation in vivo after transient stimulation. Furthermore, the extent of in vivo proliferation correlates with the duration of in vitro Ag stimulation. These results indicate that the requirements for autocrine IL-2 production by CD8 T cells differs between in vitro and in vivo conditions and suggests that factors in addition to IL-2 can support Ag-independent CD8 T cell proliferation.  相似文献   

5.
The number of virus-specific CD8 T cells increases substantially during an acute infection. Up to 90% of CD8 T cells are virus specific following lymphocytic choriomeningitis virus (LCMV) infection. In contrast, studies identifying virus-specific CD4 T cell epitopes have indicated that CD4 T cells often recognize a broader array of Ags than CD8 T cells, consequently making it difficult to accurately quantify the total magnitude of pathogen-specific CD4 T cell responses. In this study, we show that CD4 T cells become CD11a(hi)CD49d(+) after LCMV infection and retain this expression pattern into memory. During the effector phase, all the LCMV-specific IFN-γ(+) CD4 T cells display a CD11a(hi)CD49d(+) cell surface expression phenotype. In addition, only memory CD11a(hi)CD49d(+) CD4 T cells make IFN-γ after stimulation. Furthermore, upon secondary LCMV challenge, only CD11a(hi)CD49d(+) memory CD4 T cells from LCMV-immune mice undergo proliferative expansion, demonstrating that CD11a(hi)CD49d(+) CD4 T cells are truly Ag specific. Using the combination of CD11a and CD49d, we demonstrate that up to 50% of the CD4 T cells are virus specific during the peak of the LCMV response. Our results indicate that the magnitude of the virus-specific CD4 T cell response is much greater than previously recognized.  相似文献   

6.
Acute viral infections induce extensive proliferation and differentiation of virus-specific CD8+ T cells. One mechanism reported to regulate the proliferative capacity of activated lymphocytes is mediated by the effect of telomerase in maintaining the length of telomeres in proliferating cells. We examined the regulation of telomerase activity and telomere length in naive CD8+ T cells and in virus-specific CD8+ T cells isolated from mice infected with lymphocytic choriomeningitis virus. These studies reveal that, compared with naive CD8+ T cells, which express little or no telomerase activity, Ag-specific effector and long-lived memory CD8+ T cells express high levels of telomerase activity. Despite the extensive clonal expansion that occurs during acute lymphocytic choriomeningitis virus infection, telomere length is maintained in both effector and memory CD8+ T cells. These results suggest that induction of telomerase activity in Ag-specific effector and memory CD8+ T cells is important for the extensive clonal expansion of both primary and secondary effector cells and for the maintenance and longevity of the memory CD8+ T cell population.  相似文献   

7.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.  相似文献   

8.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

9.
Naïve CD4 T cells are triggered to undergo spontaneous proliferation, a proliferative response induced in response to homeostatic stimulation, when exposed to severe lymphopenic environments. They spontaneously acquire proinflammatory effector phenotypes, playing a major role in inducing chronic inflammation in the intestine that is believed to be induced by T cell recognition of commensal antigens. While the antigens inducing the T cell responses and inflammation are being extensively investigated, the role of clonality of T cells involved in this process remains poorly understood. In this study, we utilized naïve CD4 T cells isolated from B6 H2M−/− mice, in which MHCII molecules are complexed with a single CLIP molecule, and examined spontaneous proliferation and intestinal inflammation of CD4 T cells expressing limited T cell receptor repertoire diversity. We found that H2M−/− CD4 T cells undergo robust spontaneous proliferation, differentiate into IFNγ-producing Th1 type effector cells, and, most unexpectedly, induce severe acute hepatocellular necrosis. T cell interaction with MHCII molecule on cells of hematopoietic origin was essential to induce the pathology. Interestingly, B cells are fully capable of preventing necrotic inflammation via IL-10-independent and B7-H1-dependent mechanism. This could be a useful animal model to examine T cell-mediated liver inflammation and B cell-mediated immune regulation.  相似文献   

10.
CD4 and CD8 T cells have been shown to proliferate and differentiate to different extents following antigenic stimulation. CD4 T cells form a heterogenous pool of effector cells in various stages of division and differentiation, while nearly all responding CD8 T cells divide and differentiate to the same extent. We examined CD4 and CD8 T cell responses during bacterial infection by adoptive transfer of CFSE-labeled monoclonal and polyclonal T cells. Monoclonal and polyclonal CD8 T cells both divided extensively, whereas monoclonal CD4 T cells underwent limited division in comparison with polyclonal CD4 T cells. Titration studies revealed that the limited proliferation of transferred monoclonal CD4 T cells was due to inhibition by a high precursor frequency of clonal T cells. This unusually high precursor frequency of clonal CD4 T cells also inhibited the differentiation of these cells. These results suggest that the adoptive transfer of TCR transgenic CD4 T cells significantly underestimates the extent of proliferation and differentiation of CD4 T cells following infection.  相似文献   

11.
Cutting edge: antigen-independent CD8 T cell proliferation   总被引:11,自引:0,他引:11  
Recent analyses of CD8 T cell responses to Listeria monocytogenes infection demonstrate that the duration of in vivo T cell proliferation is not determined by the amount or duration of Ag presentation. However, the extent to which T lymphocytes are capable of proliferating in the absence of Ag is unknown. Herein we demonstrate that CD8 T lymphocytes undergo up to eight rounds of proliferation in the absence of Ag following transient, 2.5-h in vitro antigenic stimulation. Ag-independent expansion of CD8 T cells is driven by IL-2 and is further augmented by IL-7 or IL-15. These experiments clearly demonstrate that CD8 T cells undergo prolonged proliferation following transient Ag exposure and support the notion that in vivo CD8 T cell expansion following infection can be uncoupled from Ag presentation.  相似文献   

12.
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.  相似文献   

13.
It has recently been established that memory CD8(+) T cells induced by viral infection are maintained at unexpectedly high frequencies in the spleen. While it has been established that these memory cells are phenotypically heterogeneous, relatively little is known about the functional status of these cells. Here we investigated the proliferative potential of CD8(+) memory T cells induced by Sendai virus infection. High frequencies of CD8(+) T cells specific for both dominant and subdominant Sendai virus epitopes persisted for many weeks after primary infection, and these cells were heterogeneous with respect to CD62L expression (approximately 20% CD62L(hi) and 80% CD62L(lo)). Reactivation of these cells with the antigenic peptide in vitro induced strong proliferation of antigen-specific CD8(+) T cells. However, approximately 20% of the cells failed to proliferate in vitro in response to a cognate peptide but nevertheless differentiated into effector cells and acquired full cytotoxic potential. These cells also expressed high levels of CD62L (in marked contrast to the CD62L(lo) status of the proliferating cells in the culture). Direct isolation of CD62L(hi) and CD62L(lo) CD8(+) T cells from memory mice confirmed the correlation of this marker with proliferative potential. Taken together, these data demonstrate that Sendai virus infection induces high frequencies of memory CD8(+) T cells that are highly heterogeneous in terms of both their phenotype and their proliferative potential.  相似文献   

14.
Studies in IFN-gamma-deficient mice suggest that the delivery of IFN-gamma to CD8(+) T cells early in virus infection programs their eventual contraction, thereby reducing the abundance of CD8(+) memory T cells. In this study, we show that such mice fail to completely eliminate virus infection and that, when evaluated without the confounding factor of persisting Ag, both CD4(+) and CD8(+) T cells undergo profound contraction when they are unable to receive IFN-gamma signals. Furthermore, the abundance of CD4(+) and CD8(+) memory cells that express the IFN-gamma receptor is approximately 100-fold higher than cells lacking this molecule. Thus, direct IFN-gamma signaling is not required for T cell contraction during virus infection, and it enhances, rather than suppresses, the development of virus-specific CD4(+) and CD8(+) T cell memory.  相似文献   

15.
CD4+CD8+ double-positive (DP) T cells represent a minor subpopulation of T lymphocytes found in the periphery of adult rats. In this study, we show that peripheral DP T cells appear among the first T cells that colonize the peripheral lymphoid organs during fetal life, and represent approximately 40% of peripheral T cells during the perinatal period. Later their proportion decreases to reach the low values seen in adulthood. Most DP T cells are small size lymphocytes that do not exhibit an activated phenotype, and their proliferative rate is similar to that of the other peripheral T cell subpopulations. Only 30-40% of DP T cells expresses CD8beta chain, the remaining cells expressing CD8alphaalpha homodimers. However, both DP T cell subsets have an intrathymic origin since they appear in the recent thymic emigrant population after injection of FITC intrathymically. Functionally, although DP T cells are resistant to undergo apoptosis in response to glucocorticoids, they show poor proliferative responses upon CD3/TCR stimulation due to their inability to produce IL-2. A fraction of DP T cells are not actively synthesizing the CD8 coreceptor, and they gradually differentiate to the CD4 cell lineage in reaggregation cultures. Transfer of DP T lymphocytes into thymectomized SCID mice demonstrates that these cells undergo post-thymic maturation in the peripheral lymphoid organs and that their CD4 cell progeny is fully immunocompetent, as judged by its ability to survive and expand in peripheral lymphoid organs, to proliferate in response to CD3 ligation, and to produce IL-2 upon stimulation.  相似文献   

16.
Homeostasis of the naive CD4+ T cell compartment during aging   总被引:1,自引:0,他引:1  
Despite thymic involution, the number of naive CD4(+) T cells diminishes slowly during aging, suggesting considerable peripheral homeostatic expansion of these cells. To investigate the mechanisms behind, and consequences of, naive CD4+ T cell homeostasis, we evaluated the age-dependent dynamics of the naive CD4+ T cell subsets CD45RA+CD31+ and CD45RA+CD31-. Using both a cross-sectional and longitudinal study design, we measured the relative proportion of both subsets in individuals ranging from 22 to 73 years of age and quantified TCR excision circle content within those subsets as an indicator of proliferative history. Our findings demonstrate that waning thymic output results in a decrease in CD45RA+CD31+ naive CD4+ T cells over time, although we noted considerable individual variability in the kinetics of this change. In contrast, there was no significant decline in the CD45RA+CD31- naive CD4+ T cell subset due to extensive peripheral proliferation. Our longitudinal data are the first to demonstrate that the CD45RA+CD31+CD4+ subset also undergoes some in vivo proliferation without immediate loss of CD31, resulting in an accumulation of CD45RA+CD31+ proliferative offspring. Aging was associated with telomere shortening within both subsets, raising the possibility that accumulation of proliferative offspring contributes to senescence of the naive CD4+ T cell compartment in the elderly. In contrast, we observed retention of clonal TCR diversity despite peripheral expansion, although this analysis did not include individuals over 65 years of age. Our results provide insight into naive CD4+ T cell homeostasis during aging that can be used to better understand the mechanisms that may contribute to immunosenescence within this compartment.  相似文献   

17.
Ag-specific precursor frequency is increasingly being appreciated as an important factor in determining the kinetics, magnitude, and degree of differentiation of T cell responses, and recently was found to play a critical role in determining the relative requirement of CD8(+) T cells for CD28- and CD154-mediated costimulatory signals during transplantation. We addressed the possibility that variations in CD4(+) T cell precursor frequency following transplantation might affect CD4(+) T cell proliferation, effector function, and provision of help for donor-reactive B cell and CD8(+) T cell responses. Using a transgenic model system wherein increasing frequencies of donor-reactive CD4(+) T cells were transferred into skin graft recipients, we observed that a critical CD4(+) T cell threshold precursor frequency was necessary to provide help following blockade of the CD28 and CD154 costimulatory pathways, as measured by increased B cell and CD8(+) T cell responses and precipitation of graft rejection. In contrast to high-frequency CD8(+) T cell responses, this effect was observed even though the proliferative and cytokine responses of Ag-specific CD4(+) T cells were inhibited. Thus, we conclude that an initial high frequency of donor-reactive CD4(+) T cells uncouples T cell proliferative and effector cytokine production from the provision of T cell help.  相似文献   

18.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

19.
Viral clearance in hepatitis C virus (HCV) infection has been correlated with strong, multi-specific and sustained T cell responses. The number of functionally active effector T cells determines the outcome of infection. Only a small number of antigen-specific naïve T cells are originally present. Upon infection, they undergo activation, clonal expansion and differentiation to become effector cells. In this study, we determined the ability of dendritic cells (DCs) to prime T cells in vitro to become effector cells upon stimulation with various TLR ligands or IFNα. T cell priming and activation was determined by proliferation and production of effector molecules, IFN-γ and Granzyme B (GrB). HCV Core-specific T cells showed significant increase in proliferation, and the number of HCV Core-specific CD4+ and CD8+ T cells producing IFN-γ and GrB was higher than control or NS3-specific T cells. These in vitro-primed CD4+ and CD8+ T cells exhibit the phenotype of just-activated and/or armed effector lymphocytes confirming the transition of naïve T cells to effector cells. This is the first study demonstrating the activation of GrB+CD4+ T cells against antigen(s) derived from HCV. Our study suggests a novel role of CD4+ T cells in immunity against HCV.  相似文献   

20.
Non-specific suppression of the immune response was investigated in Brugia pahangi-infected Lewis rats. The proliferative response of peripheral blood lymphocytes or splenic non-adherent cells to mitogens was significantly reduced by B. pahangi infection. The degree of hyporesponsiveness of splenic non-adherent cells to mitogens was comparable between microfilaremic and non-microfilaremic animals. The suppressed proliferative response of splenic non-adherent cells was restored by blocking with anti-CD8 monoclonal antibody. After separation of T cells into CD4+ and CD8+ subpopulations, only CD8+ T cells from B. pahangi-infected rats suppressed the proliferative response of normal spleen cells to concanavalin A. CD8+ T cells from normal rats had no suppressive effect. On the other hand, the proliferative response of CD4+ T cells to concanavalin A was comparable between normal and infected rats. These results suggest that CD8+ T cells participate in the non-specific suppression of immune response in experimental filariasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号