首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A novel class of azetidinone acid-derived dual PPARalpha/gamma agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARalpha and PPARgamma receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.  相似文献   

3.
A series of 2-alkoxydihydrocinnamates were synthesized as PPARgamma and PPARalpha dual agonists. In vitro studies in cell model showed that these compounds were efficacious. Compound 1g was found to be a potent PPARalpha/gamma dual agonist and will be further evaluated for the treatment of type II diabetes.  相似文献   

4.
A series of azaindole-alpha-alkyloxyphenylpropionic acid analogues was synthesized and evaluated for PPAR agonist activities. Structure-activity relationship was developed for PPARalpha/gamma dual agonism. One of the synthesized compound 7a was identified as a potent, selective PPARalpha/gamma dual agonist.  相似文献   

5.
6.
The three subtypes of peroxisome proliferator activated-receptors (PPARalpha, delta and gamma) control the storage and metabolism of fatty acids. Treatment of rats with the PPARalpha ligand ciprofibrate increases serum gastrin concentrations, and several lines of evidence suggest that non-amidated gastrins act as growth factors for the colonic mucosa. The aim of the present study was to investigate the expression of PPARs and the effect of PPAR ligands on gastrin production and cell proliferation in human colorectal carcinoma (CRC) cell lines. mRNAs for all three PPAR subtypes were detected by PCR in all CRC cell lines tested. The concentrations of progastrin, but not of glycine-extended or amidated gastrin, measured by radioimmunoassay in LIM 1899 conditioned media and cell extracts were significantly increased by treatment with the PPARalpha ligand clofibrate. Similar increases in progastrin were seen following treatment with the PPARalpha ligands ciprofibrate and fenofibrate, but not with bezafibrate, gemfibrozil or Wy 14643. The PPARgamma agonist rosiglitazone had no significant effect on progastrin production. The PPARalpha ligand clofibrate also stimulated proliferation of the LIM 1899 cell line. We conclude that some PPARalpha ligands increase progastrin production by the human CRC cell line LIM 1899, and that clofibrate increases proliferation of LIM 1899 cells. These studies have revealed a relationship between PPARs and gastrin, two regulatory molecules implicated in the pathogenesis of CRC.  相似文献   

7.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls lipid and glucose metabolism and exerts antiinflammatory activities. PPARalpha is also reported to influence bile acid formation and bile composition. Farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that mediates the effects of bile acids on gene expression and plays a major role in bile acid and possibly also in lipid metabolism. Thus, both PPARalpha and FXR appear to act on common metabolic pathways. To determine the existence of a molecular cross-talk between these two nuclear receptors, the regulation of PPARalpha expression by bile acids was investigated. Incubation of human hepatoma HepG2 cells with the natural FXR ligand chenodeoxycholic acid (CDCA) as well as with the nonsteroidal FXR agonist GW4064 resulted in a significant induction of PPARalpha mRNA levels. In addition, hPPARalpha gene expression was up-regulated by taurocholic acid in human primary hepatocytes. Cotransfection of FXR/retinoid X receptor in the presence of CDCA led to up to a 3-fold induction of human PPARalpha promoter activity in HepG2 cells. Mutation analysis identified a FXR response element in the human PPARalpha promoter (alpha-FXR response element (alphaFXRE)] that mediates bile acid regulation of this promoter. FXR bound the alphaFXRE site as demonstrated by gel shift analysis, and CDCA specifically increased the activity of a heterologous promoter driven by four copies of the alphaFXRE. In contrast, neither the murine PPARalpha promoter, in which the alphaFXRE is not conserved, nor a mouse alphaFXRE-driven heterologous reporter, were responsive to CDCA treatment. Moreover, PPARalpha expression was not regulated in taurocholic acid-fed mice. Finally, induction of hPPARalpha mRNA levels by CDCA resulted in an enhanced induction of the expression of the PPARalpha target gene carnitine palmitoyltransferase I by PPARalpha ligands. In concert, these results demonstrate that bile acids stimulate PPARalpha expression in a species-specific manner via a FXRE located within the human PPARalpha promoter. These results provide molecular evidence for a cross-talk between the FXR and PPARalpha pathways in humans.  相似文献   

8.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in macrophages where they control cholesterol homeostasis and inflammation. In an attempt to identify new PPARalpha and PPARgamma target genes in macrophages, a DNA array-based global gene expression profiling experiment was performed on human primary macrophages treated with specific PPARalpha and PPARgamma agonists. Surprisingly, AdipoR2, one of the two recently identified receptors for adiponectin, an adipocyte-specific secreted hormone with anti-diabetic and anti-atherogenic activities, was found to be induced by both PPARalpha and PPARgamma. AdipoR2 induction by PPARalpha and PPARgamma in primary and THP-1 macrophages was confirmed by Q-PCR analysis. Interestingly, treatment with a synthetic LXR agonist induced the expression of both AdipoR1 and AdipoR2. Furthermore, co-incubation with a PPARalpha ligand and adiponectin resulted in an additive effect on the reduction of macrophage cholesteryl ester content. Finally, AdipoR1 and AdipoR2 are both present in human atherosclerotic lesions. Moreover, AdipoR1 is more abundant than AdipoR2 in monocytes and its expression decreases upon differentiation into macrophages, whereas AdipoR2 remains constant. In conclusion, AdipoR1 and AdipoR2 are expressed in human atherosclerotic lesions and macrophages and can be modulated by PPAR and LXR ligands, thus identifying a mechanism of crosstalk between adiponectin and these nuclear receptor signaling pathways.  相似文献   

9.
Peroxisome proliferator-activated receptors (PPARs) and other members of the nuclear hormone receptor family are important drug targets for the treatment of metabolic diseases. PPARalpha and PPARgamma play crucial roles in lipid and glucose metabolism, respectively. Therefore, screening methods that help to rapidly identify activators of these receptors should be of considerable value. A homogeneous fluorescence polarization (FP) ligand binding assay capable of rapidly identifying ligands that bind to both PPARalpha and PPARgamma has been developed using purified PPARalpha or PPARgamma ligand binding domains and a fluorescein-labeled analog (FLA) of a potent dual PPARalpha/gamma activator. FLA activator showed good binding affinity toward both PPARalpha (K(i)=0.7microM) and PPARgamma (K(i)=0.4microM). The binding of FLA activator was rapid and reached a plateau within 10 min. The resulting FP signal was stable for at least 18h. The FP binding assay performed robustly in a 384-well format, and the average Z' value was 0.77. There was a good correlation between the binding potency (IC(50) values) and rank order of binding potency for a panel of standard PPAR ligands obtained in FP binding assay and scintillation proximity assay or gel filtration binding assays using (3)H-labeled PPARalpha (r(2)=0.99) and PPARgamma (r(2)=0.99) ligands. There was also a good correlation of IC(50) values obtained by FP binding assay and scintillation proximity assay for the clinically used PPAR activators. Thus, the FP binding assay with a single fluorescein-labeled PPARalpha/gamma dual activator offers a homogeneous nonradioactive, sensitive, robust, and less expensive high-throughput assay for detecting compounds that bind to both PPARgamma and PPARalpha. Using this FP binding assay, we have identified a large number of PPARalpha/gamma dual activators. A similar assay platform may be easily adapted to other members of the nuclear hormone receptor family.  相似文献   

10.
We have developed a new class of PPARalpha/gamma dual agonists, which show excellent agonistic activity in PPARalpha/gamma transactivation assay. In particular, (R)-9d was identified as a potent PPARalpha/gamma dual agonist with EC(50)s of 0.377 microM in PPARalpha and 0.136 microM in PPARgamma, respectively. Interestingly, the structure-activity relationship revealed that the stereochemistry of the identified PPARalpha/gamma dual agonists significantly affects their agonistic activities in PPARalpha than in PPARgamma.  相似文献   

11.
Replacement of the methyl-thiazole moiety of GW501516 (a PPARdelta selective agonist) with [1,2,4]thiadiazole gave compound 21 which unexpectedly displayed submicromolar potency as a partial agonist at PPARalpha in addition to the high potency at PPARdelta. A structure-activity relationships study of 21 resulted in the identification of 40 as a potent and selective PPARalpha/delta dual agonist. Compound 40 and its close analogs represent a new series of PPARalpha/delta dual agonists. The high potency, high selectivity, significant gene induction, excellent PK profiles, low P450 inhibition or induction, and good in vivo efficacy in four animal models support 40 being selected as a pre-clinical study candidate, and may render 40 as a valuable pharmacological tool in elucidating the complex roles of PPARalpha/delta dual agonists, and the potential usage for the treatment of metabolic syndrome.  相似文献   

12.
13.
Computational analysis of the ligand binding pocket of the three PPAR receptor subtypes was utilized in the design of potent PPARalpha agonists. Optimum PPARalpha potency and selectivity were obtained with substituents having van der Waals volume around 260. Compound 6 had a PPARalpha potency of 0.002 microM and a selectivity ratio to PPARgamma and PPARdelta of 410 and 2000, respectively.  相似文献   

14.
15.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is mainly expressed in liver and involved in lipid metabolism. Oxidation of certain fatty acids in peroxisomes is under PPARalpha control. A wide variety of lipid molecules activate PPARalpha as well as the fibric acid derivative clofibrate. In the present study, we evaluated the differential activation of PPARalpha with several agonist ligands through its expression and DNA binding in both rat (McA-RH7777) and human (HepG2) hepatoma cell lines. In McA-RH7777 cells, clofibrate alone mediated a higher induction of PPARalpha expression than linoleic acid. In contrast, linoleic acid was the most effective ligand in HepG2 cells and treatment with clofibrate plus linoleic acid did not further increase PPARalpha expression. PPRE-binding activity of PPARalpha in ligand-treated cells was also increased in a parallel manner. We suggest that ligand-induced PPARalpha activation might give rise to differential species-dependent responses.  相似文献   

16.
LSN862 is a novel peroxisome proliferator-activated receptor (PPAR)alpha/gamma dual agonist with a unique in vitro profile that shows improvements on glucose and lipid levels in rodent models of type 2 diabetes and dyslipidemia. Data from in vitro binding, cotransfection, and cofactor recruitment assays characterize LSN862 as a high-affinity PPARgamma partial agonist with relatively less but significant PPARalpha agonist activity. Using these same assays, rosiglitazone was characterized as a high-affinity PPARgamma full agonist with no PPARalpha activity. When administered to Zucker diabetic fatty rats, LSN862 displayed significant glucose and triglyceride lowering and a significantly greater increase in adiponectin levels compared with rosiglitazone. Expression of genes involved in metabolic pathways in the liver and in two fat depots from compound-treated Zucker diabetic fatty rats was evaluated. Only LSN862 significantly elevated mRNA levels of pyruvate dehydrogenase kinase isozyme 4 and bifunctional enzyme in the liver and lipoprotein lipase in both fat depots. In contrast, both LSN862 and rosiglitazone decreased phosphoenol pyruvate carboxykinase in the liver and increased malic enzyme mRNA levels in the fat. In addition, LSN862 was examined in a second rodent model of type 2 diabetes, db/db mice. In this study, LSN862 demonstrated statistically better antidiabetic efficacy compared with rosiglitazone with an equivalent side effect profile. LSN862, rosiglitazone, and fenofibrate were each evaluated in the humanized apoA1 transgenic mouse. At the highest dose administered, LSN862 and fenofibrate reduced very low-density lipoprotein cholesterol, whereas, rosiglitazone increased very low-density lipoprotein cholesterol. LSN862, fenofibrate, and rosiglitazone produced maximal increases in high-density lipoprotein cholesterol of 65, 54, and 30%, respectively. These findings show that PPARgamma full agonist activity is not necessary to achieve potent and efficacious insulin-sensitizing benefits and demonstrate the therapeutic advantages of a PPARalpha/gamma dual agonist.  相似文献   

17.
Aryl-tetrahydropyridine derivatives were prepared and their PPARalpha/gamma dual agonistic activities were evaluated. Among them, compound (S)-5b was identified as a potent PPARalpha/gamma dual agonist with an EC(50) of 1.73 and 0.64 microM in hPPARalpha and gamma, respectively. In diabetic (db/db) mice, compound (S)-5b showed good glucose lowering efficacy and favorable pharmacokinetic properties.  相似文献   

18.
A series of oxadiazole-substituted alpha-isopropoxy phenylpropanoic acids with dual agonist activity on PPARalpha and PPARgamma is described. Several of these compounds also showed partial agonist activity on PPARdelta. Resolution of one analogue showed that PPARalpha and PPARgamma activity resided in mainly one enantiomer, whereas PPARdelta activity was retained in both enantiomers.  相似文献   

19.
A series of 1,3-dioxane carboxylic acid derivatives was synthesized and evaluated for human PPAR transactivation activity. Structure-activity relationships on the phenyloxazole moiety of the lead compound 3 revealed that the introduction of small hydrophobic substituents at the 4-position of the terminal phenyl ring increased the PPARalpha agonist activity, and that the oxazole heterocycle was essential to the maintenance of both potency and PPARalpha subtype-selectivity. This investigation led to the identification of 14d (NS-220) and 14i as highly potent and selective human PPARalpha agonists. In KK-A(y) type 2 diabetic mice, these compounds significantly lowered plasma triglyceride and very-low-density plus low-density lipoprotein cholesterol levels while simultaneously raising HDL cholesterol levels. Our results suggest that highly potent and subtype-selective PPARalpha agonists will be promising drugs for the treatment of metabolic disorders in type 2 diabetes.  相似文献   

20.
Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ~22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号