首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown.  相似文献   

2.
Nectar contains water, sugars and amino acids to attract pollinators and defenders and is protected from nectar robbers and microorganisms by secondary compounds and antimicrobial proteins. Floral and extrafloral nectar secretion can be induced by jasmonic acid, it is often adjusted to consumer identity and consumption rate and depends on invertase activity. Invertases are likely to play at least three roles: the uploading of sucrose from the phloem, carbohydrate mobilization during active secretion and the postsecretory adjustment of the sucrose:hexose ratio of nectar. However, it remains to be studied how plants produce and secrete non-carbohydrate components. More research is needed to understand how plants produce nectar, the most important mediator of their interactions with mutualistic animals.  相似文献   

3.
植物蔗糖合酶的结构、功能及应用   总被引:1,自引:0,他引:1  
蔗糖合酶(Sucrose synthase, EC 2.4.1.13, SuS)是植物中广泛存在的一种糖基转移酶,能催化蔗糖的分解及合成反应,是叶片光合作用产物蔗糖进入各种代谢途径所必需的关键酶之一,在植物的生长发育过程中发挥着至关重要的作用.近年研究表明,蔗糖合酶不仅在植物淀粉合成、提高植株抗逆性和影响植株生长等方面扮演着重要的角色,也能为机体提供核苷单糖供体,而这个特性也使得蔗糖合酶基因可以作为一个催化成分被用于核苷单糖的生物合成,具有广泛的应用前景.本文对蔗糖合酶家族基因的染色体定位及功能、蔗糖合酶的结构及亚细胞定位,以及其所具有的生物学功能进行了综述,旨在为蔗糖合酶的进一步研究奠定理论基础.  相似文献   

4.
Plant carotenoid cleavage oxygenases and their apocarotenoid products   总被引:11,自引:0,他引:11  
The oxidative cleavage of carotenoids leads to the production of apocarotenoids and is catalyzed by a family of carotenoid cleavage dioxygenases (CCDs). CCDs often exhibit substrate promiscuity, which probably contributes to the diversity of apocarotenoids found in nature. Biologically and commercially important apocarotenoids include the phytohormone abscisic acid, the visual and signaling molecules retinal and retinoic acid, and the aromatic volatile beta-ionone. Unexpected properties associated with the CCD catalytic products emphasize their role in many aspects of plant growth and development. For instance, CCD7 and CCD8 produce a novel, graft-transmissible hormone that controls axillary shoot growth in plants. Here, CCDs are discussed according to their roles in the biosynthesis of these products. Recent studies regarding their mechanism of action are also addressed.  相似文献   

5.
6.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

7.
* Invertases and fructan exohydrolases (FEHs) fulfil important physiological functions in plants. Sucrose is the typical substrate for invertases and bacterial levansucrases but not for plant FEHs, which are usually inhibited by sucrose. * Here we report on complexes between chicory (Cichorium intybus) 1-FEH IIa with the substrate 1-kestose and the inhibitors sucrose, fructose and 2,5 dideoxy-2,5-imino-D-mannitol. Comparisons with other family GH32 and 68 enzyme-substrate complexes revealed that sucrose can bind as a substrate (invertase/levansucrase) or as an inhibitor (1-FEH IIa). * Sucrose acts as inhibitor because the O2 of the glucose moiety forms an H-linkage with the acid-base catalyst E201, inhibiting catalysis. By contrast, the homologous O3 of the internal fructose in the substrate 1-kestose forms an intramolecular H-linkage and does not interfere with the catalytic process. Mutagenesis showed that W82 and S101 are important for binding sucrose as inhibitor. * The physiological implications of the essential differences in the active sites of FEHs and invertases/levansucrases are discussed. Sucrose-inhibited FEHs show a K(i) (inhibition constant) well below physiological sucrose concentrations and could be rapidly activated under carbon deprivation.  相似文献   

8.
Purine and pyrimidine nucleotide metabolism in higher plants   总被引:1,自引:0,他引:1  
  相似文献   

9.
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp.  相似文献   

10.
In plants, sugars act as signalling molecules that control many aspects of metabolism and development. Arabidopsis plants homozygous for the recessive sucrose uncoupled-6 (sun6) mutation show a reduced sensitivity to sugars for processes such as photosynthesis, gene expression and germination. The sun6 mutant is insensitive to sugars that are substrates for hexokinase, suggesting that SUN6 might play a role in hexokinase-dependent sugar responses. The SUN6 gene was cloned by transposon tagging and analysis showed it to be identical to the previously described ABSCISIC ACID INSENSITIVE-4 (ABI4) gene. Our analysis suggests the involvement of abscisic acid and components of the abscisic acid signal transduction cascade in a hexokinase-dependent sugar response pathway. During the plant life cycle, SUN6/ABI4 may be involved in controlling metabolite availability in an abscisic acid- and sugar-dependent way.  相似文献   

11.
Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin.  相似文献   

12.
13.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

14.
植物光合作用的产物主要以蔗糖的形式在植物体内进行从源到库的运输.蔗糖转运蛋白是此过程的重要参与者,其表达和调控与植物中光合作用产物的分配紧密关联,从而调控着植物的生长发育、结果结实、抗逆抗病等性状.蔗糖转运蛋白的表达受到植物发育时期、外界环境条件及激素的影响.蔗糖转运蛋白的调控机制有转录因子的调节、基因内部序列调控、蛋...  相似文献   

15.
Sugars such as sucrose serve dual functions as transported carbohydrates in vascular plants and as signal molecules that regulate gene expression and plant development. Sugar-mediated signals indicate carbohydrate availability and regulate metabolism by co-coordinating sugar production and mobilization with sugar usage and storage. Analysis of mutants with altered responses to sucrose and glucose has shown that signaling pathways mediated by sugars and abscisic acid interact to regulate seedling development and gene expression. Using a novel screen for sugar-response mutants based on the activity of a luciferase reporter gene under the control of the sugar-inducible promoter of the ApL3 gene, we have isolated high sugar-response (hsr) mutants that exhibit elevated luciferase activity and ApL3 expression in response to low sugar concentrations. Our characterization of these hsr mutants suggests that they affect the regulation of sugar-induced and sugar-repressed processes controlling gene expression, growth, and development in Arabidopsis. In contrast to some other sugar-response mutants, they do not exhibit altered responses to ethylene or abscisic acid, suggesting that the hsr mutants may have a specifically increased sensitivity to sugars. Further characterization of the hsr mutants will lead to greater understanding of regulatory pathways involved in metabolite signaling.  相似文献   

16.
Carbon metabolite sensing and signalling   总被引:6,自引:0,他引:6  
  相似文献   

17.
miR319在植物器官发育中的调控作用   总被引:1,自引:0,他引:1  
Luo M  Zhang ZM  Gao J  Zeng X  Pan GT 《遗传》2011,33(11):1203-1211
microRNAs(miRNAs)是一类内源性的、21~25个碱基长度的小分子非编码RNA,它通过指导剪切或者抑制翻译等方式调节植物基因的表达,参与调控植物生长发育各个方面。大量研究表明,miR319通过靶向TCPs转录因子控制植物叶、花等器官的生长命运,并参与调控部分激素生物合成和信号传导通路,在植物发育过程中发挥重要生物学功能。文章综述了miR319在植物叶形态建成、生长发育以及叶衰老和花器官发育等过程中的重要调控作用。  相似文献   

18.
MiR398 and plant stress responses   总被引:2,自引:0,他引:2  
  相似文献   

19.
The pollen tube is a tip-growing system that delivers sperm to the ovule and thus is essential for sexual plant reproduction. Sucrose and other microelements act as nutrients and signaling molecules through pathways that are not yet fully understood. Taking advantage of high-throughput liquid chromatography coupled to mass spectrometry (LC-MS), we performed a label-free shotgun proteomic analysis of pollen in response to nutrient limitation using mass accuracy precursor alignment. We compared 168 LC-MS analyses and more than 1 million precursor ions and could define the proteomic phenotypes of pollen under different conditions. In total, 166 proteins and 42 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, providing new insights into the multifaceted mechanism of nutrient function. The phosphorylation of proteins involved in cytoskeleton dynamics was found to be specifically responsive to Ca(2+) and sucrose deficiency, suggesting that sucrose and extracellular Ca(2+) influx are necessary for the maintenance of cytoskeleton polymerization. Sucrose limitation leads to widespread accumulation of proteins involved in carbohydrate metabolism and protein degradation. This highlights the wide range of metabolic and cellular processes that are modulated by sucrose but complicates dissection of the signaling pathways.  相似文献   

20.
There is evidence suggesting that in plants changes in the photosynthetic source/sink balance are an important factor that regulates leaf photosynthetic rate through affects on the leaf carbohydrate status. However, to resolve the regulatory mechanism of leaf photosynthetic rate associated with photosynthetic source/sink balance, information, particularly on mutual relationships of experimental data that are linked with a variety of photosynthetic source/sink balances, seems to be still limited. Thus, a variety of manipulations altering the plant source/sink ratio were carried out with soybean plants, and the mutual relationships of various characteristics such as leaf photosynthetic rate, carbohydrate content and the source/sink ratio were analyzed in manipulated and non-manipulated control plants. The manipulations were removal of one-half or all pods, removal of one-third or two-third leaves, and shading of one-third or one-half leaves with soybean plants grown for 8 weeks under 10 h light (24 degrees C) and 14 h darkness (17 degrees C). It was shown that there were significant negative correlations between source/sink ratio (dry weight ratio of attached leaves to other all organs) and leaf photosynthetic rate; source/sink ratio and activation ratio (percentage of initial activity to total activity) of Rubisco in leaf extract; leaf carbohydrate (sucrose or starch) content and photosynthetic rate; carbohydrate (sucrose or starch) content and activation ratio of Rubisco; amount of protein-bound ribulose-1,5-bisphosphate (RuBP) in leaf extract and leaf photosynthetic rate; and the amount of protein-bound RuBP and activation ratio of Rubisco. In addition, there were significant positive correlations between source/sink ratio and leaf carbohydrate (sucrose or starch) content; source/sink ratio and the amount of protein-bound RuBP; carbohydrate (sucrose or starch) content and amount of protein-bound RuBP and the activation ratio of Rubisco and leaf photosynthetic rate. The plant water content, leaf chlorophyll and Rubisco contents were not affected significantly by the manipulations. There is a previous report in Arabidopsis thaliana that the amount of protein-bound RuBP in leaf extract correlates negatively with the activation ratio of Rubisco in the leaf extract. Therefore, the results obtained from the manipulation experiments indicate that there is a regulatory mechanism for the leaf photosynthetic rate that correlates negatively with leaf carbohydrate (sucrose and starch) status and positively with the activation state of Rubisco under a variety of photosynthetic source/sink balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号