首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence staining and morphometrical measurements revealed that callose was a component of newly formed cell plates of symmetrically dividing cells and asymmetrically dividing antheridial mother cells during gibberellic acid-induced antheridiogenesis as well as in walls of young growing cells of Anemia phyllitidis gametophytes. Callose in cell walls forms granulations characteristic of pit fields with plasmodesmata. 2-deoxy-d-glucose (DDG), eliminated callose granulations and reduced its amount estimated by measurements of fluorescence intensity. This effect was accompanied by reduction of antheridia and cell numbers as well as size and atrophy of particular cells and whole gametophytes. It is suggested that inhibition of glucose metabolism and/or signalling, might decrease callose synthesis in A. phyllitidis gametophytes leading to its elimination from cell plates of dividing cells and from walls of differentiating ones as well as from plasmodesmata resulting in inhibition of cytokinesis, cell growth and disruption of the intercellular communication system, thus disturbing developmental programs and leading to cell death.  相似文献   

2.
Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy.  相似文献   

3.
Strengthening of plant cell walls at the site of fungal entry is one of the earliest plant responses to fungal pathogens. The aim of our study was to characterize the pattern of callose synthase localization and callose deposition in roots of Pinus sylvestris after infection by species of the Heterobasidion annosum s.l. complex with different host specificity: H. annosum s.s., H. parviporum and H. abietinum. To address this, sense‐labelled probes and ribonuclease‐treated samples were used to determine in situ hybridizations of callose synthase by FISH method. Furthermore, determination of callose accumulation within P. sylvestris cells was carried out using aniline blue. The different species of H. annosum s.l. had distinct impacts on the callose synthase staining within plant tissues. Moreover, while inoculation with strains of H. abietinum resulted in callose synthase accumulation at the point of hyphae contact with the host cell, this was not observed with the other species. A significant difference in callose synthesis localization was observed after inoculation with varied species of H. annosum s.l. as a result of the specific interactions with the host.  相似文献   

4.
In suspension cultured cells of parsley (Petroselinum crispum), chitosan elicited a rapid deposition of the 1,3-ß-glucan callose on the cell wall and a slower formation of coumarins. With cells remaining in conditioned growth medium, fully N-deacetylated chitosans and partially N-acetylated chitosans were about equally active, the potency increased with the degree of polymerization up to several thousand and addition of reduced glutathione increased the sensitivity of the cells. These results indicate common initial events in the induction of callose and coumarin synthesis although two fully independent metabolic pathways are involved. When the cells were suspended in fresh growth medium, less chitosan was required, and fully N-deacetylated chitosan became the best callose elicitor.Abbreviations DP average degree of polymerization - GSH reduced glutathione - PE pachyman equivalents - Pmg Phytophthora megasperma f. sp.glycinea  相似文献   

5.
A new method for the rapid and quantitative fluorometric determination of callose is described. In suspension-cultured cells of Glycine max, synthesis of callose starts within 20 minutes of treatment with chitosan and parallels over hours the accumulation of 1,3-linked glucose in the wall. Poly-l-lysine also elicits callose synthesis. The effect of chitosan is enhanced by Polymyxin B at low concentrations; this antibiotic alone at higher concentrations can also induce callose synthesis. Callose synthesis is immediately stopped when external Ca2+ is bound by ethylene glycolbis-(2-aminoethyl ether)-N,N′-tetraacetate or cation exchange beads, and partly recovers upon restoration of 15 micromolar Ca2+.  相似文献   

6.
Tucker MR  Paech NA  Willemse MT  Koltunow AM 《Planta》2001,212(4):487-498
Callose accumulates in the walls of cells undergoing megasporogenesis during embryo sac formation in angiosperm ovules. Deficiencies in callose deposition have been observed in apomictic plants and causal linkages between altered callose deposition and apomictic initiation proposed. In apomictic Hieracium, embryo sacs initiate by sexual and apomictic processes within an ovule, but sexual development terminates in successful apomicts. Callose deposition and the events that lead to sexual termination were examined in different Hieracium apomicts that form initials pre- and post-meiosis. In apomictic plants, callose was not detected in initial cell walls and deficiencies in callose deposition were not observed in cells undergoing megasporogenesis. Multiple initial formation pre-meiosis resulted in physical distortion of cells undergoing megasporogenesis, persistence of callose and termination of the sexual pathway. In apomictic plants, callose persistence did not correlate with altered spatial or temporal expression of a β-1,3-glucanase gene (HpGluc) encoding a putative callose-degrading enzyme. Expression analysis indicated HpGluc might function during ovule growth and embryo sac expansion in addition to callose dissolution in sexual and apomictic plants. Initial formation pre-meiosis might therefore limit the access of HpGluc protein to callose substrate while the expansion of aposporous embryo sacs is promoted. Callose deposition and dissolution during megasporogenesis were unaffected when initials formed post-meiosis, indicating other events cause sexual termination. Apomixis in Hieracium is not caused by changes in callose distribution but by events that lead to initial cell formation. The timing of initial formation can in turn influence callose dissolution. Received: 18 April 2000 / Accepted: 10 July 2000  相似文献   

7.
Kartusch R 《Protoplasma》2003,220(3-4):219-225
Summary.  Metal ions induce the synthesis of callose in Allium cepa epidermal cells. Callose is deposited as single knoblike local accumulations, aggregates of knobs, or furrowed clusters tightly attached to the cell wall. The most effective metal is copper, it induces callose formation at micromolar concentrations. Agents acting on inositolphosphate metabolism, phospholipase inhibitors, calcium channel inhibitors, modulators of cytoplasmic calcium, or receptor antagonists influence callose synthesis. It is concluded that metal ions, especially Cu2+, initiate a signal transduction chain by activation of phospholipases and generation of inositol 1,4,5-trisphosphate, and that callose synthesis is a cellular defence reaction caused by the disturbance of intracellular calcium homeostasis. Received October 10, 2001; accepted September 16, 2002; published online March 11, 2003  相似文献   

8.
Radford JE  White RG 《Protoplasma》2011,248(1):205-216
Actin and myosin are components of plasmodesmata, the cytoplasmic channels between plant cells, but their role in regulating these channels is unclear. Here, we investigated the role of myosin in regulating plasmodesmata in a well-studied, simple system comprising single filaments of cells which form stamen hairs in Tradescantia virginiana flowers. Effects of myosin inhibitors were assessed by analysing cell-to-cell movement of fluorescent tracers microinjected into treated cells. Incubation in the myosin inhibitor, 2,3-butanedione monoxime (BDM) or injection of anti-myosin antibodies increased cell–cell transport of fluorescent dextrans, while treatment with the myosin inhibitor N-ethylmaleimide (NEM) decreased cell–cell transport. Pretreatment with the callose synthesis inhibitor, deoxy-d-glucose (DDG), enhanced transport induced by BDM treatment or injection of myosin antibodies but did not relieve NEM-induced reduction in transport. In contrast to the myosin inhibitors, cell-to-cell transport was unaffected by treatment with the actin polymerisation inhibitor, latrunculin B, after controlling for callose synthesis with DDG. Transport was increased following azide treatment, and reduced after injection of ATP, as in previous studies. We propose that myosin detachment from actin, induced by BDM, opens T. virginiana plasmodesmata whereas the firm attachment of myosin to actin, promoted by NEM, closes them.  相似文献   

9.
The pectin content of the cell walls of maize suspension cells was modified to investigate its role in the expression of aluminium (Al) toxicity. Long‐term adaptation to NaCl or to the cellulose synthesis inhibitor 2,6‐dichlorbenzonitirle (DCB) increased the pectin content by 31 and 86%, respectively. Subculturing salt‐adapted cells for up to 3 weeks without NaCl supply or treatment of cells with pectolyase for up to 15 min reduced pectin contents by up to 46%. Such pre‐cultured cells were incubated for 2 h in presence of Al. There was a close positive correlation between pectin and both total and BaCl2 non‐exchangeable Al contents. Aluminium‐induced callose formation as an indicator of Al injury was closely positively correlated to the loss of cell viability. In NaCl‐adapted and pectolyase‐treated cells, Al‐induced callose formation was reduced when compared with normal cells. However, there was a close positive relationship between pectin contents and relative callose induction (digitonin‐induced callose formation, reflecting the different capabilities of cells to synthesize callose set to 100%) indicating that cells with higher pectin contents are more Al‐sensitive. The results presented support our view that the binding of Al to the cell wall pectin‐matrix represents an important step in the expression of Al toxicity.  相似文献   

10.
Treatment of tobacco BY-2 cells with 10 mM caffeine that was started after the cells had entered the mitotic phase did not completely inhibit the deposition of callose in the cell plate and allowed the centrifugal redistribution of phragmoplast microtubules. On the other hand, when treatment with caffeine was started before the cells entered the mitotic phase, the deposition of callose was completely inhibited and the redistribution of phragmoplast microtubules was also inhibited. As the inhibition of redistribution of phragmoplast microtubules seems to be caused by the inhibition of depolymerization of microtubules at the central region of the phragmoplast, these results strongly suggest that the deposition of callose in the cell plate is tightly linked with the depolymerization of phragmoplast microtubules. Callose deposition was observed in phragmoplasts isolated from caffeine-treated cells as well as in those isolated from non-caffeine-treated cells, and caffeine did not inhibit callose synthesis in isolated phragmoplast, indicating that caffeine neither inhibits the accumulation of callose synthase at the equatorial regions of the phragmoplast nor arrests callose synthase itself.  相似文献   

11.
Electron microscopic observations of wheat premeiocytes in premeiotic mitosis (PMM) and premeiotic interphase (PMI) are reported. In archesporial cells of columns at last PMM there is a significant increase in activity of endoplasmic reticulum. Characteristic states of chromatin of premeiocyte nuclei in the stages of PMI are illustrated. Changes in the primary walls of PMCs at Stage 1, PMI, precede the formation of callose in Stage 2. In general, callose deposition throughout the PMC column follows the pattern described elsewhere in Sorghum and other Gramineae. The behavior of the plasmalemma during callose synthesis resembles that described elsewhere in Cucurbita. A role for the cell endomembrane system in callose synthesis is suggested. Blebs arising from the inner membrane of the nuclear envelope, described elsewhere in endosperm cells of wheat and by us in wheat PMCs in this report, give rise to vesicles which carry nuclear material into the cell cytoplasm. Differences in this transport mechanism as it appears in the two tissue systems are described.  相似文献   

12.
A. Staß  W. J. Horst 《Plant and Soil》1995,171(1):113-118
Short-term responses of soybean (Glycine max) cells to aluminium (Al) were studied in suspension culture. Formation of callose was the most sensitive indicator of Al effects. As low as 5 µM Al induced callose formation and an increase in callose concentration could be measured as early as 15 min after beginning the Al treatment. Also membrane permeability was rapidly affected by Al. Potassium net-efflux was reduced by increasing Al concentrations up to 300 µM Al. Increasing the pH of the external solution from 4.3 to 5.3 enhanced callose formation, indicating more severe Al damage at pH 5.3, which is in agreement with a model on H+ amelioration of Al toxicity. Al did not initiate or enhance ferrous sulfate (FeSO4)-promoted lipid peroxidation. The results indicate that the plasma membrane is a primary target of Al and that cell suspension culture is a powerful tool to study effects of Al on plant roots.  相似文献   

13.
The pattern of callose deposition was studied in anthers and ovules of three meiotic mutants of Zea mays L. The synthesis of the callose wall in sporogenous cells was related to their transfer to meiotic division.  相似文献   

14.
Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery mildew. Callose deposition was never observed in cells subsidiary to the guard cells, and the absence of callose in such cells is suggested to be the reason for the sporadic occurrence of powdery mildew colonies on barleys with the ml-o gene.  相似文献   

15.
Silicon (Si) uptake by Poaceae plants has beneficial effects on herbivore defense. Increased plant physical barrier and altered herbivorous feeding behaviors are documented to reduce herbivorous arthropod feeding and contribute to enhanced plant defense. Here, we show that Si amendment to rice (Oryza sativa) plants contributes to reduced feeding in a phloem feeder, the brown planthopper (Nilaparvata lugens, BPH), through modulation of callose deposition. We associated the temporal dynamics of BPH feeding with callose deposition on sieve plates and further with callose synthase and hydrolase gene expression in plants amended with Si. Biological assays revealed that BPH feeding was lower in Si‐amended than in nonamended plants in the early stages post‐BPH infestation. Histological observation showed that BPH infestation triggered fast and strong callose deposition in Si‐amended plants compared with nonamended plants. Analysis using qRT‐PCR revealed that expression of the callose synthase gene OsGSL1 was up‐regulated more and that the callose hydrolase (β‐1,3‐glucanase) gene Gns5 was up‐regulated less in Si‐amended than in nonamended plants during the initial stages of BPH infestation. These dynamic expression levels of OsGSL1 and Gns5 in response to BPH infestation correspond to callose deposition patterns in Si‐amended versus nonamended plants. It is demonstrated here that BPH infestation triggers differential gene expression associated with callose synthesis and hydrolysis in Si‐amended and nonamended rice plants, which allows callose to be deposited more on sieve tubes and sieve tube occlusions to be maintained more thus contributing to reduced BPH feeding on Si‐amended plants.  相似文献   

16.
Cell suspension cultures of Zeamays L. were adapted to grow under conditions of NaCl stress, which increased the cell‐wall pectin content of these cells by 31% compared with unadapted cells (controls). Both cultures were treated for 5 or 10 min with pectin methylesterase (PME) and afterwards incubated in the presence of Al for 2 h. The different capabilities of the cells to synthesise callose due to pre‐treatment were taken into account by calculating relative Al‐induced callose induction (digitonin=100%). Only in salt‐adapted cells with a degree of methylation of cell‐wall pectin (DM) decreasing from 34% (control) to 13%, did PME treatment enhance total and BaCl2‐non‐exchangeable Al contents and Al sensitivity as indicated by increased callose formation. In a further step, a wider variation in DM was achieved by subculturing the NaCl‐adapted cells for up to 3 weeks without NaCl supply and adapting them to the cellulose‐synthesis inhibitor 2,6‐dichlorbenzonitrile (DCB). This reduced DM to 26%, while short‐term treatment with pectolyase resulted in the lowest DM (12%). After the 2 h Al treatment, there was a close negative relationship between DM and relative callose formation of Al contents, with the exception of pectolyase‐treated cells. In addition, intact plants of Solanumtuberosum L. genotypes were characterised for their Al sensitivity in hydroponics using root elongation, Al‐induced callose formation and Al contents of root tips as parameters. Based on all three parameters, the transgenic potato mutant overexpressing PME proved to be more Al‐sensitive than the wild type, the Al‐resistant and even the Al‐sensitive potato cultivar. Especially in the root tips (1 cm), Al treatment (2 h, 50 μM) increased the activity of PME more in the Al‐sensitive than in the Al‐resistant genotypes. The presented data emphasise the importance of the DM of the pectin matrix and the activity of PME for the expression of Al toxicity and Al resistance.  相似文献   

17.
Membrane preparations from suspension-cultured cells of French bean (Phaseolus vulgaris L.) contained callose synthase (EC 2.4.1.34) activity which was preserved upon solubilisation. Following elicitor treatment of cell cultures, increased activity could be extracted and this increase was maintained during purification. The enzyme was purified by high-pressure liquid chromatography and active fractions showed a variable association of two polypeptides of relative molecular masses (Mr) 55 000 and 65 000, the latter being in excess. The Mr-65 000 polypeptide was purified to homogeneity and an antibody raised to it. This antibody showed complex effects on callose synthase activity when incubated with membrane and soluble extracts. In comparison with other systems, the Mr-55 000 subunit is likely to represent the catalytic subunit while the Mr-65 000 polypeptide is a possible regulatory subunit. The Mr-65 000 polypeptide was immunolocated in membranes at sites of callose synthesis in the plant, in cell plates, in sieve plates, at the plasma membrane-wall interface of wounded cells and in papillae in infected cells. Received: 18 January 1997 / Accepted: 8 May 1997  相似文献   

18.

Background  

The cell wall component callose is mainly synthesized at certain developmental stages and after wounding or pathogen attack. Callose synthases are membrane-bound enzymes that have been relatively well characterized in vitro using isolated membrane fractions or purified enzyme. However, little is known about their functional properties in situ, under conditions when the cell wall is intact. To allow in situ investigations of the regulation of callose synthesis, cell suspensions of Arabidopsis thaliana (Col-0), and tobacco (BY-2), were permeabilized with the channel-forming peptide alamethicin.  相似文献   

19.
T. Waldmann  W. Jeblick  H. Kauss 《Planta》1988,173(1):88-95
In suspension-cultured cells of Glycine max and Catharanthus roseus, marked callose synthesis can be induced by digitonin and chitosan. Leakage of a limited pool of electrolytes precedes callose formation, K+ representing the major cation lost. Poly-L-ornithine, as well as the ionophores A 23187 and ionomycin, also induces some callose synthesis but to a lesser extent. Digitonin increases the net uptake of Ca2+ from the external buffer with a time course parallel to callose synthesis but lagging behind the leakage of K+. Nifedipine partly blocks callose synthesis as well as the digitonin-induced increase in net Ca2+ uptake. Taken together, the data support the hypothesis that addition of the various substances might indirectly lead to membrane perturbation causing the common event of an increase in net Ca2+ uptake which results in callose deposition by a direct activition of the Ca2+-dependent and plasma-membane-located 1,3--glucan synthase.  相似文献   

20.
Callose is synthesized on the forming cell plate and several other locations in the plant. We cloned an Arabidopsis cDNA encoding a callose synthase (CalS1) catalytic subunit. The CalS1 gene comprises 42 exons with 41 introns and is transcribed into a 6.0-kb mRNA. The deduced peptide, with an approximate molecular mass of 226 kD, showed sequence homology with the yeast 1,3-beta-glucan synthases and is distinct from plant cellulose synthases. CalS1 contains 16 predicted transmembrane helices with the N-terminal region and a large central loop facing the cytoplasm. CalS1 interacts with two cell plate--associated proteins, phragmoplastin and a novel UDP-glucose transferase that copurifies with the CalS complex. That CalS1 is a cell plate--specific enzyme is demonstrated by the observations that the green fluorescent protein--CalS1 fusion protein was localized at the growing cell plate, that expression of CalS1 in transgenic tobacco cells enhanced callose synthesis on the forming cell plate, and that these cell lines exhibited higher levels of CalS activity. These data also suggest that plant CalS may form a complex with UDP-glucose transferase to facilitate the transfer of substrate for callose synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号