首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamoxifen (and 4-hydroxytamoxifen), a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment of breast cancer, interacts strongly with the respiratory chain of isolated rat liver mitochondria. The drug acts as both an uncoupling agent and a powerful inhibitor of electron transport. Tamoxifen brings about a collapse of the membrane potential. Enzymatic assays and spectroscopic studies indicate that tamoxifen inhibits electron transfer in the respiratory chain at the levels of complex III (ubiquinol–cytochrome-c reductase) and, to a lesser extent, of complex IV (cytochrome-c oxidase). The activities can be restored by the addition of diphosphatidylglycerol, a phospholipid implicated in the functioning of the respiratory chain complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The mitochondrial inner membrane possesses an anion channel (IMAC) which mediates the electrophoretic transport of a wide variety of anions and is believed to be an important component of the volume homeostatic mechanism. IMAC is regulated by matrix Mg2+ (IC50=38 µM at pH 7.4) and by matrix H+ (pIC50=7.7). Moreover, inhibition by Mg2+ is pH-dependent. IMAC is also reversibly inhibited by many cationic amphiphilic drugs, including propranolol, and irreversibly inhibited byN,N-dicyclohexylcarbodiimide. Mercurials have two effects on its activity: (1) they increase the IC50 values for Mg2+, H+, and propranolol, and (2) they inhibit transport. The most potent inhibitor of IMAC is tributyltin, which blocks anion uniport in liver mitochondria at about 1 nmol/mg. The inhibitory dose is increased by mercurials; however, this effect appears to be unrelated to the other mercurial effects. IMAC also appears to be present in plant mitochondria; however, it is insensitive to inhibition by Mg2+, mercurials, andN,N-dicyclohexylcarbodiimide. Some inhibitors of the adenine nucleotide translocase also inhibit IMAC, including Cibacron Blue, agaric acid, and palmitoyl CoA; however, atractyloside has no effect.  相似文献   

3.
This paper considers stages of the search (initiated by V. P. Skulachev) for a receptor protein for fatty acids that is involved in their uncoupling effect. Based on these studies, mechanism of the ADP/ATP antiporter involvement in the uncoupling induced by fatty acids was proposed (Skulachev, V. P. (1991) FEBS Lett., 294, 158– 162). New data (suppression by carboxyatractylate of the SDS-induced uncoupling, pH-dependence of the ADP/ATP and the glutamate/aspartate antiporter contributions to the uncoupling, etc.) led to modification of this hypothesis. During discussion of the uncoupling effect of fatty acids caused by opening of the Ca2+-dependent pore, special attention is given to the effects of carboxyatractylate added in the presence of ADP. The functioning of the uncoupling protein UCP2 in kidney mitochondria is considered, as well as the diversity observed by us in effects of 200 µM GDP on decrease in under the influence of oleic acid added after H2O2 (in the presence of succinate, oligomycin, malonate). A speculative explanation of the findings is as follows: 1) products of lipid and/or fatty acid peroxidation (PPO)modify the ADP/ATP antiporter in such a way that its involvement in the fatty acid-induced uncoupling is suppressed by GDP; 2) GDP increases the PPO concentration in the matrix by suppression of efflux of fatty acid hydroperoxide anions through the UCP (Goglia, F., and Skulachev, V. P. (2003) FASEB, 17, 1585–1591)and/or of efflux of PPO anions with involvement of the GDP-sensitive ADP/ATP antiporter; 3) PPO can potentiate the oleate-induced decrease in due to inhibition of succinate oxidation.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 197–202.Original Russian Text Copyright © 2005 by Mokhova, Khailova.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

4.
The activating anions are found to induce an unexpectedly high (up to 8-fold for sulphite) increase of ATPase activity in intact rat liver mitochondria. This effect is not determined by the observed changes in Km and Ki (ADP) values. The stimulation seems to be caused by dissociation of the inactive complex of ATPase with Mg·ADP. The quantity of this complex formed in the course of ATP hydrolysis is approx. 90% of the total ATPase content in intact mitochondria. The data on toluene-permeabilized mitochondria suggest that the high content of the complex is a result of the stabilizing effect of some matrix macromolecules.  相似文献   

5.
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.  相似文献   

6.
The fluorescent dye 10-N-nonyl acridine orange (NAO), known as specifically associated with mitochondria, has been reported to have a cytotoxic effect when high doses were applied to cells. Presently, the biochemical basis of its toxicity was investigated on isolated rat liver mitochondria. At low concentrations, NAO strongly inhibited state 3 respiration and ATP synthesis. At high concentrations, electron transport, ATP hydrolysis, Pi-transport and adenine nucleotide activities were also decreased. All these inhibitions can be explained by probe-cardiolipin interactions which could induce the collapse of energy conversion and/or the modification of membrane fluidity.  相似文献   

7.
8.
甘草提取物对鼠肝线粒体氧化损伤的保护作用   总被引:1,自引:0,他引:1  
用60%乙醇回流甘草,得粗提物(RG0),经AB-8大孔树脂纯化RG0得到甘草精提物(RG1),并对RG0和RG1主要活性成分的含量进行测定。为研究RG0和RG1对鼠肝线粒体氧化损伤的保护作用,用Vc-Fe2+诱导线粒体损伤,测定RG0和RG1对ATP酶的活性、线粒体肿胀度和蛋白质羰基含量的影响;用H2O2-Fe2+体系诱导线粒体脂质过氧化,测定RG0和RG1对丙三醛(MDA)含量的影响;用NBT法测定RG0和RG1抑制线粒体产生超氧阴离子的作用。结果显示:RG0和RG1可以显著地抑制线粒体的氧化损伤,并能防止线粒体肿胀和ATP酶活力下降,降低蛋白质羰基化水平,以及具有有效清除线粒体产生的超氧阴离子自由基的作用。因此,RG0和RG1对鼠肝线粒体的氧化损伤具有良好的保护作用,RG1的作用比RG0好。  相似文献   

9.
Mitochondria normally exhibit very low electrophoretic permeabilities to physiologically important anions such as chloride, bicarbonate, phosphate, succinate, citrate, etc. Nevertheless, considerable evidence has accumulated which suggests that heart and liver mitochondria contain a specific anion-conducting channel. In this review, a postulated inner membrane anion channel is discussed in the context of other known pathways for anion transport in mitochondria. This anion channel exhibits the following properties. It is anion-selective and inhibited physiologically by protons and magnesium ions. It is inhibited reversibly by quinine and irreversibly by dicyclohexylcarbodiimide. We propose that the inner membrane anion channel is formed by inner membrane proteins and that this pathway is normally latent due to regulation by matrix Mg2+. The physiological role of the anion channel is unknown; however, this pathway is well designed to enable mitochondria to restore their normal volume following pathological swelling. In addition, the inner membrane anion channel provides a potential futile cycle for regulated non-shivering thermogenesis and may be important in controlled energy dissipation.  相似文献   

10.
It has been found that oligomycin inhibits up to at least 50% state-4 mitochondrial respiration. A time dependence of oligomycin inhibition has been shown. A titration curve for state-4 respiration of sigmoidal profile has been presented. The possibility of misreading this oligomycin effect, so far never reported, has been excluded by evaluating the quality of mitochondrial preparations used in respect to their morphological, functional and electrochemical properties. The conclusion has therefore been put forward that the most part of respiration in steady-state-4 is driven by ATP synthesis.  相似文献   

11.
The effects of hexachlorobenzene treatment and simultaneous iron-overload on the iron and porphyrin content of rat liver and rat liver mitochondria have been examined. In order to assess damages to the mitochondrial membrane occuring with these treatments, the content of malondialdehyde and selected functional properties of mitochondria were compared with those from control animals. Prolonged intake of hexachlorobenzene (8 weeks) resulted in a striking increased level of porphyrins together with a moderate increase in iron concentration. Simultaneous administration of hexachlorobenzene and iron-dextran caused the porphyrin level to reach 25% of the amount induced by hexachlorobenzene alone. The iron concentrations in liver as well as in liver mitochondria are also decreased under these conditions, as compared to the effect of iron-dextran. In contrast, the effects of hexachlorobenzene combined with iron-dextran on mitochondrial oxidative phosphorylation and malondialdehyde content are greater than those of either hexachlorobenzene or iron-dextran. These data suggest that porphyrin accumulation per se causes little deleterious effect and that both agents administered together act synergistically in causing damage to the mitochondrial membrane.  相似文献   

12.
S. Sandberg  I. Romslo 《BBA》1980,593(2):187-195
The respiration rates and the respiratory control ratios of isolated rat liver mitochondria have been measured following exposure to 0–160 kJ/m2 of near-ultraviolet radiation (blacklight) in the presence of low concentrations of porphyrins (0.1–0.2 μmol/l).

Depending on the light dose, the concentration and the type of porphyrin, the following sequence of reactions occurred: uncoupling and inhibition of oxidative phosphorylation, energy dissipation, inhibition of respiration and swelling and disruption of the mitochondria.

The detrimental effects could not be elicited in the absence of oxygen, neither could they be elicited by porphyrins or light alone.

At equimolar concentrations, the effectiveness of the porphyrins as photosensitizers were: deuteroporphyrin > protoporphyrin coproporphyrin > murophorphyrin.

The results may be of importance to explain the skin lesions seen when porphyrins of different hydrophobicity accumulate in the skin.  相似文献   


13.
In order to further investigate the mechanisms regulating the control of mitochondrial respiration by thyroid hormone, the proton motive force was measured during State IV respiration in liver mitochondria isolated from euthyroid, hyperthyroid, hypothyroid and T3-treated hypothyroid rats. The proton motive force was significantly higher in the hyperthyroid group due to an increased pH. The proton motive force of hypothyroid mitochondria was lower than controls due to a decreased membrane potential. The proton motive force for the T3-treated hypothyroid group did not differ from the euthyroid group due to negating changes in the pH gradient and the membrane potential. The intramitochondrial volume was decreased in the hyperthyroid group and unchanged in the other groups. The results indicate that the thyroid status alters the proton motive force in State IV through individual changes in the pH and membrane potential components of the force. The component that changes in hyperthyroid mitochondria is different from that changing in hypothyroid mitochondria.  相似文献   

14.
(1) The reason for substrate specificity of Sr2+-induced oscillating cation fluxes in isolated rat liver mitochondria was investigated. (2) With succinate as substrate, rotenone prevented oscillation. In this case the mitochondria were only partially able to take up added Sr2+ and did not take up any of the released K+. Addition of substances decreasing the mitochondrial NADHNAD+ ratio (oxaloacetate or acetoacetate) restored the ability for reuptake of K+ and for complete uptake of Sr2+ and, therefore, oscillation. (3) Inhibition of substrate-level phosphorylation by arsenite or uncoupling of substrate-level phosphorylation by arsenate in the presence of oligomycin also suppressed the reuptake of cations. This effect of inhibition of substrate-level phosphorylation on oscillation could be circumvented by addition of ATP in the presence of oligomycin. (4) Prevention of the intramitochondrial regeneration of 2-oxoglutarate from acetyl-CoA and oxaloacetate by fluorocitrate or from endogenous glutamate by aminoxyacetate shortened the time during which oscillation with succinate as substrate could be observed. (5) From the key role of substrate level phosphorylation it is concluded that for the reuptake of K+ and Sr2+ during oscillation, sufficient GTP generation by the succinyl thiokinase (EC 6.2.1.4) reaction is essential. Therefore substrate level phosphorylation seems to be a necessary energy source additional to the respiratory chain. Since the latter process drives the active cation movements, the former may be required for the restoration of a sufficiently low proton conductance of the mitochondrial inner membrane. Oscillation in the absence of exogenous ATP therefore demands 2-oxoglutarate as substrate or the intramitochondrial generation of 2-oxoglutarate for the maintenance of a sufficient GTP production for a longer time.  相似文献   

15.
Mitochondria are cellular organelles where the generation of reactive oxygen species may be high. They are, however, effectively protected by their high capacities of antioxidative systems, as enzymes and either water or lipid soluble low molecular weight antioxidants.These antioxidative defence systems can be effectively regenerated after or during an oxidative stress as long as the mitochondria are in an energized state. Energization of mitochondria mainly depends on the availability of suitable respiratory substrates which can provide hydrogen for the reduction of either the glutathione- or -tocopherol-system, since GSH is regenerated by glutathione reductase with the substrate NADPH and the -tocopheroxyl-radical likely by reduced coenzyme Q. It was shown that mitochondria do not undergo damages as long as they can keep a high energy state. The delicate balance between prooxidative/antioxidative activities can be shifted towards oxidation, if experimentally prooxidants were added. After exhaustion of the antioxidative defence systems damages of rnitochondrial functions become expressed followed by membrane injuries along with the oxidation and degradation of mitochondrial lipids and proteins leading finally to the total degradation of the mitoc hondria.Extramitochondrial antioxidants may assist the mitochondrial antioxidative defence systems in a complex way, whereby particularly ascorbic acid can act both as prooxidant and as antioxidant. (Mol Cell Biochem 174: 199–205, 1997)  相似文献   

16.
The mycotoxin citrinin, depressed the phosphorylation efficiency of liver mitochondria as deduced from a decrease of respiratory coefficient and of the ADP/O ratio. Citrinin (1.0 mM) inhibited some enzymes linked to the respiratory chain, namely NADH oxidase and NADH cytochrome c reductase involved with complex I. The activities of enzymes related with other enzymatic complexes of the respiratory chain were either unaffected or enhanced. ATPase activity was inhibited by the mycotoxin. Malate, glutamate, and 2-oxoglutarate dehydrogenases were also inhibited. The transmembrane potential (delta psi), developed by energized mitochondria and depolarization on the addition of ADP, was decreased. The results suggest that citrinin promotes a partial dissipation of the transmembrane potential, different from that resulting from a classical uncoupler such as 2,4-dinitrophenol.  相似文献   

17.
By use of the patch-clamp technique, the inner membrane of mouse liver and heart mitochondria is shown to contain a highly conductive (around 100 pS in symmetrical 150 mM KCl) and voltage-dependent ion channel. This channel closely resembles that previously found in cuprizone-treated mouse liver inner mitochondrial membrane. The paper discusses the electrical properties of the channel and its possible physiological function. The reconstitution in giant liposomes of a partially purified ox heart inner membrane fraction containing the channel and the use of various inhibitors are also presented.  相似文献   

18.
Previously mildronate, an aza-butyrobetaine derivative, was shown to be a cytoprotective drug, through its mechanism of action of inhibition of carnitine palmitoyltransferase-1, thus protecting mitochondria from long-chain fatty acid accumulation and subsequent damage. Recently in an azidothymidine (AZT)-induced cardiotoxicity model in vivo (in mice), we have found mildronate's ability of protecting heart tissue from nuclear factor kappaB abnormal expression. Preliminary data also demonstrate cerebro- and hepatoprotecting properties of mildronate in AZT-toxicity models. We suggest that mildronate may target its action predominantly to mitochondria. The present study in isolated rat liver mitochondria was designed to clarify mitochondrial targets for mildronate by using AZT as a model compound. The aim of this study was to investigate: (1) whether mildronate may protect mitochondria from AZT-induced toxicity; and (2) which is the most critical target in mitochondrial processes that is responsible for mildronate's regulatory action. The results showed that mildronate protected mitochondria from AZT-induced damage predominantly at the level of complex I, mainly by reducing hydrogen peroxide generation. Significant protection of AZT-caused inhibition of uncoupled respiration, ADP to oxygen ratio, and transmembrane potential were also observed. Mildronate per se had no effect on the bioenergetics, oxidative stress, or permeability transition of rat liver mitochondria. Since mitochondrial complex I is the first enzyme of the respiratory electron transport chain and its damage is considered to be responsible for different mitochondrial diseases, we may account for mildronate's effectiveness in the prevention of pathologies associated with mitochondrial dysfunctions.  相似文献   

19.
Rat liver mitochondria, stored with the energy-linked functions preserved or in aging conditions, were used to assay the activity of various enzymes during five days. The preservation of energy-linked functions was monitored by the respiratory control coefficient. ATPase, cytochrome oxidase and NADH dehydrogenase showed increased activity when the energy-linked functions were preserved. In aging conditions, cytochrome oxidase, NADH dehydrogenase and ATPase showed decreased activity. The ATPase activity increased only when mitochondria were stored in the presence of inhibitors of the electron transport chain. The activity of NADH oxidase did not change, and succinate oxidase and succinate dehydrogenase showed a small decrease in their activity. The enzymes of the matrix, alpha-ketoglutarate dehydrogenase, malate dehydrogenase and aspartate aminotransferase showed little decrease in activity under either of the conditions of storage. The total protein content decreased slightly under both conditions of storage. These results show that the activity of the enzymes analysed was maintained at reasonable levels, when the energy-linked functions of isolated mitochondria were preserved.  相似文献   

20.
In the present study we investigated if administration of vitamin A could protect rat liver microsomes and mitochondria from in vitro peroxidation. Appreciable decrease of chemiluminescence and lipid peroxidation was measured in microsomal membranes from rats receiving vitamin A, with respect to control animals. In membranes derived from control animals, the fatty acid composition was profoundly modified when subjected to in vitro peroxidation mediated by ascorbate-Fe++, with a considerable decrease of 20:4 n6 and 22:6 n3 in mitochondria and 18:2 n6 and 20:4 n6 in microsomes. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in supplemented animals than in control group when both kind of membranes were analyzed. These changes were less pronounced in membranes derived from rats receiving vitamin A. These results are in agreement with previous results that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - CL chemiluminescence - PI peroxidizability index Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Cientificas y Técnicas de la Republica Argentina  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号