首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a polyanion (a copolymer of methacrylate, malaete and styrene in a 1:2:3 proportion with an average molecular weight of 10 000) on respiration, ATPase activity and ADP/ATP exchange activity of rat liver mitochondria and submitochondrial particles has been studied.The polyanion (at 17–150 μg/ml concentration, 100 μg polyanion corresponding to 0.83 μequiv. of carboxylic groups) inhibits the oxidation of succinate and NAD-linked substrates in state 3 in a concentration-dependent manner. The extent of this inhibition can be decreased by elevating the concentration of ADP. State 4 respiration is not affected by the polyanion. It has also a slight inhibitory effect on the oxidation of the above mentioned substrates in the uncoupled state (a maximum inhibition of 37% at 166 μg/ml polyanion concentration), which is unaffected by ADP. The strong inhibition of state 3 respiration can be relieved by 2,4-dinitrophenol to the low level observed in the uncoupled state. Ascorbate+TMPD oxidation is slightly inhibited in state 3, while it is not inhibited at all in the uncoupled state.The polyanion, depending on its concentration, strongly inhibits also the DNP-activated ATPase activity of mitochondria (50% inhibition at 40 μg/ml polyanion concentration).The ATPase activity of sonic submitochondrial particles is also inhibited. However, this inhibition is incomplete (reaching a maximum of 65%) and higher concentrations of the polyanion are required than to inhibit the ATPase activity of intact mitochondria.The polyanion inhibits the ADP/ATP translocator activity of mitochondria, measured by the “back exchange” of [2-3H]ADP. After a short preincubation of the mitochondria with the polyanion, the concentration dependence of the inhibition by the polyanion corresponds to that of the DNP-activated ATPase activity of intact mitochondria.It is concluded that, in intact mitochondria, the polyanion has at least a dual effect, i.e. it partially inhibits the respiratory chain between cytochrome b and cytochrome c, and strongly oxidative phosphorylation by blocking the ADP/ATP translocator.  相似文献   

2.
Digitonin was applied to permeabilize the plasma membrane of Bothrops alternatus erythrocytes to study respiration, oxidative phosphorylation and Ca2+ transport by mitochondria in situ. These mitochondria oxidized added NAD-linked substrates, succinate and N,N,N, N-tetramethyl-p-phenylenediamine. Respiration was sensitive to rotenone and cyanide but not to antimycin A. This indicates that Bothrops mitochondria possess the respiratory complexes NADH-ubiquinone, succinate-ubiquinone, and ferrocytochrome c-oxygen oxidoreductases, although the lack of sensitivity to antimycin A raises doubt about the composition of the ubiquinol cytochrome c-reductase complex. An ability to build up and sustain a membrane potential was documented by their capacity to accumulate tetraphenylphosphonium and Ca2+ through an uncoupler-sensitive mechanism. Addition of ADP caused a transient decrease in the membrane potential, indicating that this is the predominant driving force for ATP synthesis as in most types of mitochondria. Uncoupling of phosphorylation from the oxidative process increased hemoglobin O2 affinity, which suggests that ATP production by mitochondria may participate in modulation of O2 transport by hemoglobin.Abbreviations membrane potential - BAE Bothrops alternatus erythrocytes - DNP 2,4-dinitrophenol - DPG 2,3-diphosphoglycerate - EGTA ethyleneglycol tetra-acetic acid - FCCP carbonylcyanide p-trifloromethoxyphenylhydrazone - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - TPP+ tetraphenylphosphonium - TRIS tris-(hydroxymethyl)aminomethane  相似文献   

3.
The effects of fluoxetine on the oxidative phosphorylation of mitochondria isolated from rat brain and on the kinetic properties of submitochondrial particle F1F0-ATPase were evaluated. The state 3 respiration rate supported by pyruvate + malate, succinate, or ascorbate + tetramethyl-p-phenylenediamine (TMPD) was substantially decreased by fluoxetine. The IC50 for pyruvate + malate oxidation was 0.15 mM and the pattern of inhibition was the typical one of the electron-transport inhibitors, in that the drug inhibited both ADP- and carbonyl cyanide m-chlorophenylhydrazone (CCCP)-stimulated respirations and the former inhibition was not released by the uncoupler. Fluoxetine also decreased the activity of submitochondrial particle F1F0-ATPase (IC50 0.08 mM) even though K0.5 and activity of Triton X-100 solubilized enzyme were not changed substantially. As a consequence of these effects, fluoxetine decreased the rate of ATP synthesis and depressed the phosphorylation potential of mitochondria. Incubation of mitochondria or submitochondrial particles with fluoxetine under the conditions of respiration or F1F0-ATPase assays, respectively, caused a dose-dependent enhancement of 1-anilino-8-naphthalene sulfonate (ANS) fluorescence. These results show that fluoxetine indirectly and nonspecifically affects electron transport and F1F0)-ATPase activity inhibiting oxidative phosphorylation in isolated rat brain mitochondria. They suggest, in addition, that these effects are mediated by the drug interference with the physical state of lipid bilayer of inner mitochondrial membrane.  相似文献   

4.
Respiratory particles from hydrogen-grown Anacystis nidulans were found to oxidize H2, NADPH, NADH, succinate and ascorbate plus N,N,N,N-tetramethyl-p-phenylenediamine at rates corresponding to 28, 15, 6, 2.5, and 70 nmol O2 taken up x mg protein–1xmin–1, respectively. The particles were isolated by brief sonication of lysozyme-pretreated cells. Respiratory activities were studied in terms of both substrate oxidation and O2 uptake. The stoichiometry between oxidation of H2, NADPH, NADH or succinate, and consumption of O2 was calculated to be 1.95+-0.1 with each substrate.Inhibitors of flavoproteins did not affect the oxyhydrogen reaction while 2-n-heptyl-8-hydroxyquinoline-N-oxide as well as compounds known to block the terminal oxidase impaired the oxidation of both H2 and of NAD(P)H or succinate in a parallel fashion. No additivity of O2 uptake was observed when NADPH, NADH or succinate was present in addition to H2. Instead, H2 uptake was depressed under such conditions, and also the oxidation of NAD(P)H or succinate was increasingly lowered by increasing H2 tensions.The results suggest that in Anacystis molecular hydrogen is oxidized through the same type of respiratory chain as are NAD(P)H and succinate. Moreover, the cyanide-resistant branch of respiratory O2 uptake will be discussed, and a few results obtained with particles prepared from thylakoid-free Anacystis will also be presented.Abbreviations BAL 2,3-dimercaptopropanol-(1) - DCPIP 2,6-dichlorophenolindophenol - HOQNO 2-n-heptyl-8-hydroxyquinoline-N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - tricine N-tris-(hydroxymethyl)-methylglycine - Tris tris-(hydroxymethyl)-aminomethane - TTFA thenoyltrifluoroacetone NAD(P)H indicates NADPH and/or NADH  相似文献   

5.
Generation of a membrane potential in the respiratory chain-deficient particles of beef heart mitochondria has been studied. For detection of membrane potential, phenyl dicarbaundecaborane (PCB,) and anilinonaphthalene sulphonate (ANS) probes were used. The respiratory chain-deficient submitochondrial particles were prepared after Arion and Racker (E-SMP), the procedure including complete disappearance of membrane structures and subsequent reconstitution of membrane vesicles as judged by the electron microscopy study. E-SMP were found to be deficient in cytochromesa,a 3 and transhydrogenase, the cytochromeb,c 1 andc content being lowered. Addition of NADH, succinate and tetramethyl-p-phenylenediamine+ascorbate did not induce either any oxygen consumption or membrane potential formation. Treatment of E-SMP with NADPH+NAD+ or with NADH+CoQ0 did not entail generation of membrane potential, in contrast to that of parent, pyrophosphate submitochondrial particles (PP-SMP).E-SMP displayed an oligomycin-sensitive ATPase activity which could be increased by reconstitution of E-SMP with coupling factor F1. Addition of ATP resulted in an uptake of PCB and enhancement of ANS fluorescence, the facts testifying to the formation of the membrane potential with plus inside E-SMP. Membrane potential formation was arrested by oligomycin, rutamycin, and uncouplers. Addition of respiratory chain inhibitors (antimycin+rotenone+ cyanide), complete reduction of respiratory carriers by dithionite and oxidation by ferricyanide were without effect on ATP-supported formation of membrane potential in E-SMP. It was concluded that utilization of ATP energy for the membrane potential generation does not depend on the state of the respiratory carriers and can be demonstrated under the conditions when none of redox chain coupling sites were functioning.Abbreviations PCB phenyl dicarbaundecaborane - ANS anilinonaphthalene sulfonate - E-SMP the respiratory chain-deficient submitochondrial particles - PP-SMP pyrophosphate submitochondrial particles  相似文献   

6.
B.Dean Nelson  P. Walter  L. Ernster 《BBA》1977,460(1):157-162
The antibiotic funiculosin mimics the action of antimycin in several ways. It inhibits the oxidation of NADH and succinate, but not TMPD+ascorbate. The titer for maximal inhibition in Mg2+-ATP particles (0.4–0.6 nmol/mg protein) is close to the concentrations of cytochromes b and cc1. Funiculosin also induces the oxidation of cytochromes cc1 and an extra reduction of cytochrome b in the aerobic steady state, and it inhibits duroquinol-cytochrome c reductase activity in isolated Complex III. The location of the funiculosin binding site is clearly similar to that of antimycin. In addition, funiculosin, like antimycin, prevents electron transport from duroquinol to cytochrome b in isolated Complex III if the complex is pre-reduced with ascorbate. Funiculosin and antimycin differ, however, in the manner in which they modulate the reduction of cytochrome b by ascorbate+TMPD.  相似文献   

7.
ATPase activity in rat heart sarcoplasmic reticulum was stimulated in a concentration-dependent manner by both Ca2+ and Mg2+ in the complete absence of the other cation. Increasing concentrations of Mg2+ produced an apparent inhibition of the Ca2+-dependent ATP hydrolysis. CDTA (trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate) had no effect on these responses. The results indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase in rat heart sarcoplasmic reticulum. However, sarcoplasmic reticulum vesicles transported Ca2+ with a high affinity (K0.5 Ca2+ = 0.41 M) suggesting the presence of a high affinity Ca2+-transporting ATPase. Calmodulin did not stimulate rat heart sarcoplasmic reticulum ATPase activity over a range of Ca2+ and Mg2+ concentrations and failed to stimulate membrane phosphorylation and Ca2+ transport into sarcoplasmic reticulum vesicles. Calmodulin antagonists trifluoperazine and compound 48180 did not affect the ATPase activity. Catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating the ATPase activity. These results suggest the presence of an ATPase activity in rat heart sarcoplasmic reticulum with different properties from the high affinity Ca2+-pumping ATPase previously characterized in dog heart and other species.Abbreviations cAMP adenosine 3,5-monophosphate - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - PLB phospholamban - SR sarcoplasmic reticulum - TFP trifluoperazine  相似文献   

8.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

9.
The macrocyclic polyethers dibenzo-18-crown-6 (XXVIII) and dicyclohexyl-18-crown-6 (XXXI) inhibit the valinomycin-mediated K+ accumulation energized by glutamate, -ketoglutarate, malate plus pyruvate or isocitrate but not that promoted by succinate, ascorbate plus TMPD or ATP. The polyethers inhibit the oxidation of the former group of substrates without preventing either the oxidation of succinate or ascorbate plus TMPD or the hydrolysis of ATP.The substrate oxidation inhibited by the macrocyclic polyethers is relieved in intact mitochondria by increasing the concentration of K+ in the medium. It is also completely reverted by supplementing the medium with valinomycin, Cs+ and phosphate, or else by the addition of vitamin K3.In submitochondrial sonic particles the macrocyclic polyethers inhibit the oxidation of NADH as well as the ATP-driven reversal of electron flow at the site I of the electron transport chain. They also block the oxidation of NADH in non-phosphorylating Keilin-Hartree particles as well as in Hatefi's NADH-coenzyme Q reductase. The polyethers do not inhibit electron transport in mitochondria from the yeast which lack the first coupling site.The inhibition of electron transport by the polyethers do not require of the addition of alkali metal cations such as K+ in intact mitochondria or other membrane preparations.It is established that the macrocyclic polyethers XXVIII and XXXI, already characterized as mobile carrier molecules for K+ in model lipid membranes, inhibit electron transport at site I of the electron transport chain from mitochondrial membranes.It is suggested that the ability of the polyethers to coordinate alkali metal cations in aqueous versus lipid environments, but not K+ transportper se, is related to their rotenone-like induced inhibition of electron flow in mitochondrial membranes.Supported in part by a Grant from the Research Corporation.  相似文献   

10.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

11.
Membrane preparations, capable of high rates of respiration-linked ATP synthesis, have been obtained from a gram-positive methylotrophic bacterium Bacillus sp. MGA3. NADH, succinate, reduced TMPD and methanol were shown to be suitable substrates for the oxidative phosphorylation. Esterification of orthophosphate was dependent on electron transfer, as evidenced by the requirement for both substrate and oxygen. Phosphorylation was also dependent on ADP and was destroyed by boiling the membrane preparation. The phosphorylation was markedly uncoupled by carbonyl cyanide p-(trichloromethoxy)-phenylhydrazone (CCCP) and was inhibited by N,N-dicyclohexylcarbodiimide (DCCD). KCN caused strong inhibition of substrate oxidation as well as phosphorylation for all substrates tested. Rotenone, amytal and antimycin A caused inhibition when NADH or methanol were used as substrates. Antimycin A inhibited respiration and ATP synthesis with succinate as substrate and had no effect on ascorbate —N,N,N,N-tetramethyl-p-phenylenediimide (TMPD) oxidation by membrane preparations of Bacillus sp. MGA3. P/O ratios determined were 2.4 with NADH, 1.7 with succinate and 0.8 with reduced TMPD. The measured P/O ratio with methanol-oxidizing system was similar to that with NADH (about 2.4).Abbreviations CCCP Carbonyl cyanide p-(trichloromethoxy)-phenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - TMPD N,N,N,N-tetramethyl-p-phenylenediimide - Q ubiquinone Q  相似文献   

12.
The problem of the resolution and reconstitution of the inner mitochondrial membrane has been approached at three levels. (1) Starting with phosphorylating submitochondrial particles, a "resolution from without" can be achieved by stripping of surface components. The most extensive resolution was recently obtained with the aid of silicotungstate. Such particles require for oxidative phosphorylation the addition of several coupling factors as well as succinate dehydrogenase. (2) Starting with submitochondrial particles that have been degraded by trypsin and urea a resolution of the inner membrane proper containing an ATPase has been achieved. These experiments show that at least five components are required for the reconstitution of an oligomycin-sensitive ATPase: a particulate component, F 1, Mg++, phospholipids, and Fc. Morphologically, the reconstituted ATPase preparations resemble submitochondrial particles. (3) Starting with intact mitochondria individual components of the oxidation chain have been separated from each other. The following components were required for the reconstitution of succinoxidase: succinate dehydrogenase, cytochrome b\, cytochrome c 1, cytochrome c, cytochrome oxidase, phospholipids and Q 10. The reconstituted complex had properties similar to those of phosphorylating submitochondrial particles; i.e., the oxidation of succinate by molecular oxygen was highly sensitive to antimycin.  相似文献   

13.
Summary The anaerobic transformation of malate and succinate into propionate was demonstrated in homogenates and mitochondria isolated from the body wall musculature ofArenicola marina, a facultative anaerobic polychaete. Synthesis of propionate from succinate was enhanced by the addition of malate and ADP. In the presence of malate, acetate was formed in addition to propionate. Maximal quantities of both fatty acids were produced by mitochondria incubated with malate, succinate, and ADP. Since the rate of propionate production in this case was about the same as in homogenates when related to fresh weight, it is concluded that the enzymatic system involved is localized exclusively in the mitochondria. The rate of propionate production is correlated with the concentration of succinate, saturation being reached at about 5 mM. In tracer experiments using (methyl-14C)-malonyl-CoA, 2,3-14C-succinate, and 1-14C-propionate as precursors, the pathway of the transformation of succinate into propionate was examined. The results indicate that methylmalonyl-CoA is an intermediary product. It was shown that the synthesis of propionate from succinate is coupled to the formation of ATP. The ratio ATP/propionate was 0.76. Dinitrophenol had only a slight effect on this ratio, although the utilization of succinate was inhibited considerably. It is concluded that in vivo substrate level phosphorylation occurs equimolar to the formation of propionate from succinate.Abbreviations Ap 5 A P1,P5-di(adenosine-5-)pentaphosphate - DNP 2,4-dinitrophenol - mma methylmalonic acid - mm-CoA methylmalonyl-CoA Enzymes EC 6.2.1.1 Acetate thiokinase (AMP) - EC 3.6.1.3 actomyosin ATPase - EC 2.7.4.3 adenylate kinase - EC 2.8.3.1 CoA transferase - EC 2.7.1.1 hexokinase - EC 2.1.3.1 methylmalonyl-CoA carboxyltransferase - EC 5.4.99.1 methylmalonyl-CoA isomerase - EC 5.1.99.1 methylmalonyl-CoA racemase - EC 6.4.1.3 propionyl-CoA carboxylase - EC 1.2.4.1 pyruvate dehydrogenase Supported by Deutsche Forschungsgemeinschaft Gr 456/6  相似文献   

14.
15.
16.
The effect of lonidamine, an antispermatogenic and antitumor drug, on the oxygen consumption, ATPase activity, and redox state of the electron carriers of Ehrlich ascites tumor mitochondria has been studied. Lonidamine inhibits ADP- and uncoupler-stimulated respiration on various NAD- and FAD-linked substrates, but does not affect state 4 respiration. Experiments to determine its site of action showed that lonidamine does not significantly inhibit electron flow through cytochrome oxidase. Electron flow through site 2, the ubiquinone-cytochrome b-cytochrome c1 complex, also was unaffected by lonidamine, which failed to inhibit the oxidation of duroquinol. Moreover, inhibition of electron flow through site 2 was also excluded because of the inability of the N,N,N′,N′-tetramethyl-p-phenylenediamine bypass to relieve the lonidamine inhibition of the oxidation of pyruvate + malate. The F0F1ATPase activity and vectorial H+ ejection are also unaffected by lonidamine. The inhibition of succinate oxidation by lonidamine was found to take place at a point between succinate and iron-sulfur center S3. Spectroscopic experiments demonstrated that lonidamine inhibits the reduction of mitochondrial NAD+ by pyruvate + malate and other NAD-linked substrates in the transition from state 1 to state 4. However, lonidamine does not inhibit reduction of added NAD+ by submitochondrial vesicles or by soluble purified NAD-linked dehydrogenases. These observations, together with other evidence, suggest that electron transport in tumor mitochondria is inhibited by lonidamine at the dehydrogenase-coenzyme level, particularly when the electron carriers are in a relatively oxidized state and/or when the inner membrane-matrix compartment is in the condensed state. The action of lonidamine in several respects resembles the selective inhibition of electron transport in tumor cells produced by cytotoxic macrophages.  相似文献   

17.
Dennis R. Lang  Efraim Racker 《BBA》1974,333(2):180-186
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) shares certain properties with the mitochondrial ATPase inhibitor protein. At low concentrations it inhibits both soluble and particulate mitochondrial ATPase and has no effect on oxidative phosphorylation in submitochondrial particles. Unlike the mitochondrial inhibitor protein quercetin inhibits the ATP-dependent reduction of NAD+ by succinate in fully reconstituted submitochondrial particles. A comparison of various flavones indicates that the hydroxyl groups at the 3′ and perhaps 3 position are important for the inhibition of ATPase activity.  相似文献   

18.
The effect of potassium ions on succinic dehydrogenase activity of mitochondria was studied. The results showed that in these organelles K+ induces inhibition of the respiratory control; moreover, in submitochondrial particles potassium inhibits the rate of oxidation of succinate. The results showed also that K+ does not changes theK m for succinate but diminishes theV max. In addition, the data provide evidence that mitochondria oxidizing glutamatemalate in a sucrose medium show a higher activity of succinate dehydrogenase than mitrochondria incubated in KCl.  相似文献   

19.
The antibiotic funiculosin mimics the action of antimycin in several ways. It inhibits the oxidation of NADH and succinate, but not TMPD+ascorbate. The titer for maximal inhibition in Mg2+-ATP particles (0.4-0.6 nmol/mg protein) is close to the concentrations of cytochromes b and cc1. Funiculosin also induces the oxidation of cytochromes cc1 and an extra reduction of cytochrome b in the aerobic steady state, and it inhibits duroquinol-cytochrome c reductase activity in isolated Complex III. The location of the funiculosin binding site is clearly similar to that of antimycin. In addition, funiculosin, like antimycin, prevents electron transport from duroquinol to cytochrome b in isolated Complex III if the complex is pre-reduced with ascorbate. Funiculosin and antimycin differ, however, in the manner in which they modulate the reduction of cytochrome b by ascorbate+TMPD.  相似文献   

20.
The uptake of ethidium bromide by rat liver mitochondria and its effect on mitochondria, submitochondrial particles, and F1 were studied. Ethidium bromide inhibited the State 4-State 3 transition with glutamate or succinate as substrates. With glutamate, ethidium bromide did not affect State 4 respiration, but with succinate it induced maximal release of respiration. These effects appear to depend on the uptake and concentration of the dye within the mitochondrion. In submitochondrial particles, the aerobic oxidation of NADH is much more sensitive to ethidium bromide than that of succinate. Ethidium bromide partially inhibited the ATPase activity of submitochondrial particles and of a soluble F1 preparation. Ethidium bromide behaves as a lipophilic cation which is concentrated through an energy-dependent process within the mitochondria, producing its effects at different levels of mitochondrial function. The ability of mitochondria to concentrate ethidium bromide may be involved in the selectivity of the dye as a mitochondrial mutagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号