首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.  相似文献   

2.
Vesicular stomatitis virus (VSV) is a potent inducer of apoptosis in host cells. Recently, it has been shown that two VSV products are involved in the induction of apoptosis, the matrix (M) protein, and another viral product that has yet to be identified (S. A. Kopecky et. al., J. Virol. 75:12169-12181, 2001). Comparison of recombinant viruses containing wild-type (wt) or mutant M proteins showed that wt M protein accelerates VSV-induced apoptosis in HeLa cells, while wt M protein delays apoptosis in VSV-infected BHK cells. Our hypothesis to explain these results is that both effects of M protein are due to the ability of M protein to inhibit host gene expression. This hypothesis was tested by infecting cells with an M protein mutant virus defective in the inhibition of host gene expression (rM51R-M virus) in the presence or absence of actinomycin D, another inhibitor of host gene expression. Actinomycin D accelerated induction of apoptosis of HeLa cells infected with rM51R-M virus and delayed apoptosis in BHK cells infected with rM51R-M virus, similar to the effects of wt M protein. The idea that the induction of apoptosis by M protein in HeLa cells is due to its ability to inhibit host gene expression was further tested by comparing the activation of upstream caspase pathways by M protein versus that by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB). Expression of M protein activated both caspase-8 and caspase-9-like enzymes, as did treatment with actinomycin D or DRB. Induction of apoptosis by M protein, actinomycin D, and DRB was inhibited in stably transfected HeLa cell lines that overexpress Bcl-2, an antiapoptotic protein that inhibits the caspase-9 pathway. A synthetic inhibitor of caspase-8, Z-IETD-FMK, did not inhibit induction of apoptosis by M protein, actinomycin D, or DRB. Taken together, our data support the hypothesis that the induction of apoptosis by M protein is caused by the inhibition of host gene expression and that the caspase-9 pathway is more important than the caspase-8 pathway for the induction of apoptosis by M protein and other inhibitors of host gene expression.  相似文献   

3.
The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.  相似文献   

4.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.  相似文献   

5.
6.
The vesicular stomatitis virus (VSV) matrix (M) protein plays a major role in the virus-induced inhibition of host gene expression. It has been proposed that the inhibition of host gene expression by M protein is responsible for suppressing activation of host interferon gene expression. Most wild-type (wt) strains of VSV induce little if any interferon gene expression. Interferon-inducing mutants of VSV have been isolated previously, many of which contain mutations in their M proteins. However, it was not known whether these M protein mutations were responsible for the interferon-inducing phenotype of these viruses. Alternatively, mutations in other genes besides the M gene may enhance the ability of VSV to induce interferons. These hypotheses were tested by transfecting cells with mRNA expressing wt and mutant M proteins in the absence of other viral components and determining their ability to inhibit interferon gene expression. The M protein mutations were the M51R mutation originally found in the tsO82 and T1026R1 mutant viruses, the double substitution V221F and S226R found in the TP3 mutant virus, and the triple substitution E213A, V221F, and S226R found in the TP2 mutant virus. wt M proteins suppressed expression of luciferase from the simian virus 40 promoter and from the beta interferon (IFN-beta) promoter, while M proteins of interferon-inducing viruses were unable to inhibit luciferase expression from either promoter. The M genes of the interferon-inducing mutants of VSV were incorporated into the wt background of a recombinant VSV infectious cDNA clone. The resulting recombinant viruses were tested for their ability to activate interferon gene expression and for their ability to inhibit host RNA and protein synthesis. Each of the recombinant viruses containing M protein mutations induced expression of a luciferase reporter gene driven by the IFN-beta promoter and induced production of interferon bioactivity more effectively than viruses containing wt M proteins. Furthermore, the M protein mutant viruses were defective in their ability to inhibit both host RNA synthesis and host protein synthesis. These data support the idea that wt M protein suppresses interferon gene expression through the general inhibition of host RNA and protein synthesis.  相似文献   

7.
The ability of the c-Myc oncoprotein to potentiate apoptosis has been well documented; however, the mechanism of action remains ill defined. We have previously identified spatially distinct apoptotic pathways within the same cell that are differentially inhibited by Bcl-2 targeted to either the mitochondria (Bcl-acta) or the endoplasmic reticulum (Bcl-cb5). We show here that in Rat1 cells expressing an exogenous c-myc allele, distinct apoptotic pathways can be inhibited by Bcl-2 or Bcl-acta yet be distinguished by their sensitivity to Bcl-cb5 as either susceptible (serum withdrawal, taxol, and ceramide) or refractory (etoposide and doxorubicin). Myc expression and apoptosis were universally associated with Bcl-acta and not Bcl-cb5, suggesting that Myc acts downstream at a point common to these distinct apoptotic signaling cascades. Analysis of Rat1 c-myc null cells shows these same death stimuli induce apoptosis with characteristic features of nuclear condensation, membrane blebbing, poly (ADP-ribose) polymerase cleavage, and DNA fragmentation; however, this Myc-independent apoptosis is not inhibited by Bcl-2. During apoptosis, Bax translocation to the mitochondria occurs in the presence or absence of Myc expression. Moreover, Bax mRNA and protein expression remain unchanged in the presence or absence of Myc. However, in the absence of Myc, Bax is not activated and cytochrome c is not released into the cytoplasm. Reintroduction of Myc into the c-myc null cells restores Bax activation, cytochrome c release, and inhibition of apoptosis by Bcl-2. These results demonstrate a role for Myc in the regulation of Bax activation during apoptosis. Moreover, apoptosis that can be triggered in the absence of Myc provides evidence that signaling pathways exist which circumvent Bax activation and cytochrome c release to trigger caspase activation. Thus, Myc increases the cellular competence to die by enhancing disparate apoptotic signals at a common mitochondrial amplification step involving Bax activation and cytochrome c release.  相似文献   

8.
The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis.  相似文献   

9.
Neuroblastoma, a pediatric peripheral nervous system tumor, frequently contains alterations in apoptotic pathways, producing chemoresistant disease. Insulin-like growth factor (IGF) system components are highly expressed in neuroblastoma, further protecting these cells from apoptosis. This study investigates IGF-I regulation of apoptosis at the mitochondrial level. Elevated extracellular glucose causes rapid mitochondrial enlargement coupled with an increase in the mitochondrial membrane potential (Delta Psi(M)) followed by mitochondrial membrane depolarization (MMD), uncoupling protein 3 (UCP3) downregulation, caspase-3 activation and decreased Bcl-2. MMD inhibition by Bongkrekic acid prevents high-glucose-induced loss of UCP3 and apoptosis. Glucose exposure induces caspase-9 cleavage within 30 min, and caspase-9 inhibition prevents glucose-mediated apoptosis. IGF-I prevents caspase activation and mitochondrial events leading to apoptosis. These results suggest that elevated glucose produces early initiator caspase activation, followed by Delta Psi(M) changes, in neuroblastoma cells; in turn, IGF-I prevents apoptosis by preventing downstream caspase activation, maintaining Delta Psi(M) and regulating Bcl proteins.  相似文献   

10.
Vesicular stomatitis virus (VSV) induces apoptosis via the mitochondrial pathway. The mitochondrial pathway is regulated by the Bcl-2 family of proteins, which consists of both pro- and antiapoptotic members. To determine the relative importance of the multidomain proapoptotic Bcl-2 family members Bak and Bax, HeLa cells were transfected with Bak and/or Bax small interfering RNA (siRNA) and subsequently infected with recombinant wild-type VSV. Our results showed that Bak is more important than Bax for the induction of apoptosis in this system. Bak is regulated by two antiapoptotic Bcl-2 proteins, Mcl-1, which is rapidly turned over, and Bcl-XL, which is relatively stable. Inhibition of host gene expression by the VSV M protein resulted in the degradation of Mcl-1 but not Bcl-XL. However, inactivation of both Mcl-1 and Bcl-XL was required for cells to undergo apoptosis. While inactivation of Mcl-1 was due to inhibition of its expression, inactivation of Bcl-XL indicates a role for one or more BH3-only Bcl-2 family members. VSV-induced apoptosis was inhibited by transfection with siRNA against Bid, a BH3-only protein that is normally activated by the cleavage of caspase-8, the initiator caspase associated with the death receptor pathway. Similarly, treatment with an inhibitor of caspase-8 inhibited VSV-induced apoptosis. These results indicate a role for cross talk from the death receptor pathway in the activation of the mitochondrial pathway by VSV.The induction of cell death is a major mechanism by which many viruses cause disease in the tissues they infect (23). In addition, the cytolytic activity of viruses has the potential for therapeutic applications, such as the development of oncolytic viruses for the treatment of cancer (27). Vesicular stomatitis virus (VSV) is well studied as a prototype for negative-strand RNA viruses and is an exceptionally potent inducer of apoptosis in a wide variety of cell types (4, 20, 21). Due to its particularly rapid cytopathic effects, VSV is one of the major viruses being developed as an oncolytic agent (27). VSV is capable of inducing apoptosis by activation of multiple apoptotic pathways. It is important to determine how these pathways are activated and the role that they play in apoptosis induced by VSV in order to understand the virulence and oncolytic activity of the virus, as well as to provide a model to which other viruses can be compared.Previous work showed that wild-type (wt) VSV induces apoptosis via the mitochondrial (intrinsic) pathway through the initiator caspase caspase-9 (4, 19). This is due in part to the inhibition of host gene expression by the VSV M protein (19). The inhibition of host gene expression by M protein is the mechanism by which VSV inhibits the host antiviral response (2, 31) and leads to induction of apoptosis, similar to that induced by pharmacologic inhibitors of host gene expression (19). Additionally, M protein mutants of VSV that are deficient in the ability to inhibit new host gene expression are effective inducers of apoptosis (12, 13, 19, 20). However, in contrast to wt VSV, induction of apoptosis by M protein mutant virus occurs primarily via the extrinsic pathway through the initiator caspase caspase-8 (12, 13). Infection with M protein mutant VSV results in the expression of proapoptotic genes that are suppressed during infection with wt VSV (12). Therefore, in the case of VSV with wt M protein, the induction of apoptosis is most likely mediated by proteins already present in the host cell. Since it has previously been shown that wt VSV activates the intrinsic pathway, we focused on the Bcl-2 family of proteins to determine the role of Bcl-2 family members in apoptosis induced by wt VSV.Bcl-2 family proteins function to either suppress or promote mitochondrial outer membrane permeabilization, thereby regulating the release of proapoptotic factors into the cytosol, such as cytochrome c, apoptosis-inducing factor (AIF), and Smac/Diablo (5). Bcl-2 family proteins are subdivided into three groups, depending on the conservation of Bcl-2 homology (BH) domains and function (reviewed in references 8 and 38). The multidomain antiapoptotic Bcl-2 proteins contain BH domains BH1 to BH4 and function to inhibit apoptosis by binding to proapoptotic Bcl-2 family members. Members of this group include Bcl-2, Bcl-XL, Mcl-1, Bcl-w, and BFL-1/A1. The proapoptotic Bcl-2 proteins are comprised of two groups, the multidomain proteins and the BH3-only proteins. Bax and Bak are the two main members of the multidomain group, containing BH domains BH1 to BH3. These proteins are primarily responsible for the permeabilization of the mitochondrial outer membrane, if their activity is not suppressed by antiapoptotic Bcl-2 family members. The BH3-only proteins contain only one Bcl-2 homology domain (BH3) and include Bid, Bad, Bim, Puma, Noxa, and Bik, among others. These proteins function as upstream sensors of signaling pathways and convey to other Bcl-2 family proteins the signals to initiate apoptosis. These death signals can be transmitted from the BH3-only proteins by either binding to antiapoptotic proteins, causing the release of Bak and Bax, or binding to Bak and Bax, thereby causing their activation (6).The pathways leading to activation of Bak differ from those that activate Bax. Interestingly, only two antiapoptotic Bcl-2 proteins, Mcl-1 and Bcl-XL, have been shown to interact with Bak, while Bax appears to be able to interact with all of the antiapoptotic proteins, with the exception of Mcl-1 (7, 35). BH3-only proteins have strong binding affinities to the antiapoptotic proteins, suggesting that their primary role may be to derepress Bak and Bax by binding and inhibiting the antiapoptotic proteins (36). In addition, BH3-only proteins may play a role in activation of Bak and Bax by binding and inducing an activated conformation (6, 34). For some stimuli, such as the protein kinase inhibitor staurosporine (SSP), the topoisomerase II inhibitor etoposide, and UV radiation, Bak and Bax appear to be redundant, in that the deletion of both is required to render cells resistant to these agents (33). In contrast, Bak and Bax were nonredundant in the induction of apoptosis by Neisseria gonorrhoeae and cisplatin, such that both were required for apoptosis to occur (18).In the experiments reported here, the silencing of Bak or Bax expression with small interfering RNA (siRNA) showed that Bak is more important than Bax for the induction of apoptosis in HeLa cells infected with wt VSV. Overexpression of both of the antiapoptotic Bcl-2 family proteins known to interact with Bak, Mcl-1 and Bcl-XL, delayed the onset of apoptosis, while depletion of Mcl-1 or Bcl-XL by siRNA transfection prior to infection increased the rate of apoptosis. Furthermore, M protein inhibition of new host gene expression led to the depletion of Mcl-1, enabling the rapid activation of apoptosis. However, inhibition of Bcl-XL was also required for the initiation of apoptosis, indicating a role for one or more BH3-only proteins. Bid, a BH3-only protein that is normally activated by the cleavage of caspase-8, was shown to be important for induction of apoptosis by VSV. Likewise, treatment with an inhibitor of caspase-8 inhibited VSV-induced apoptosis. These results indicate a role for cross talk from the death receptor pathway in the activation of the mitochondrial pathway by VSV.  相似文献   

11.
Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.  相似文献   

12.
Sun R  Zhang Y  Lv Q  Liu B  Jin M  Zhang W  He Q  Deng M  Liu X  Li G  Li Y  Zhou G  Xie P  Xie X  Hu J  Duan Z 《The Journal of biological chemistry》2011,286(18):15918-15928
Toll-like receptor 3 (TLR3), a member of the pathogen recognition receptors, is widely expressed in various cells and has been shown to activate immune signaling pathways by recognizing viral double-stranded RNA. Recently, it was reported that the activation of TLR3 induced apoptosis in some cells, but the detailed molecular mechanism is not fully understood. In this study, we found that in endothelial cells polyinosinic-polycytidylic acid (poly(I-C)) induced dose- and time-dependent cell apoptosis, which was elicited by TLR3 activation, as TLR3 neutralization and down-regulation repressed the apoptosis. Poly(I-C) induced the activation of both caspases 8 and 9, indicating that TLR3 triggered the signaling of both the extrinsic and intrinsic apoptotic pathways. Poly(I-C) up-regulated tumor necrosis factor-related apoptosis-inducing ligand and its receptors, death receptors 4/5, resulting in initiating the extrinsic pathway. Furthermore, poly(I-C) down-regulated anti-apoptotic protein, B cell lymphoma 2 (Bcl-2), and up-regulated Noxa, a key Bcl-2 homology 3-only antagonist of Bcl-2, leading to the priming of the intrinsic pathway. A p53-related protein, the transactivating p63 isoform α (TAp63α), was induced by TLR3 activation and contributed to the activation of both the intrinsic and extrinsic apoptotic pathways. Both the cells deficient in p63 gene expression by RNA interference and cells that overexpressed the N-terminally truncated p63 isoform α (ΔNp63α), a dominant-negative variant of TAp63α, by gene transfection, survived TLR3 activation. Taken together, TAp63α is a crucial regulator downstream of TLR3 to induce cell death via death receptors and mitochondria.  相似文献   

13.
14.
Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2alpha in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2alpha phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.  相似文献   

15.
16.
17.
18.
19.
20.
Tissues with the highest rates of proliferation typically exhibit the highest frequencies of apoptosis, but the mechanisms that coordinate these processes are largely unknown. The homeodomain protein Gax is down-regulated when quiescent cells are stimulated to proliferate, and constitutive Gax expression inhibits cell proliferation in a p21(WAF/CIP)-dependent manner. To understand how mitogen-induced proliferation influences the apoptotic process, we investigated the effects of deregulated Gax expression on cell viability. Forced Gax expression induced apoptosis in mitogen-activated cultures, but quiescent cultures were resistant to cell death. Though mitogen activation was required for apoptosis, neither the cdk inhibitor p21(WAF/CIP) nor the tumor suppressor p53 was required for Gax-induced cell death. Arrest in G1 or S phases of the cell cycle with chemical inhibitors also did not affect apoptosis, further suggesting that Gax-mediated cell death is independent of cell cycle activity. Forced Gax expression led to Bcl-2 down-regulation and Bax up-regulation in mitogen-activated, but not quiescent cultures. Mouse embryonic fibroblasts homozygous null for the Bax gene were refractive to Gax-induced apoptosis, demonstrating the functional significance of this regulation. These data suggest that the homeostatic balance between cell growth and death can be controlled by mitogen-dependent pathways that circumvent the cell cycle to alter Bcl-2 family protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号