首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
结节硬化复合症由tscl、tsc2基因突变引起,这2个基因分别编码hamartin和tuberin,它们均为肿瘤抑制因子,在细胞生长和增殖过程中起关键性的调节作用。生长因子刺激的PI3K/Akt信号通路通过磷酸化tuberin,调控下游效应因子功能,最终影响细胞的生长和增殖。现对hamartin和tuberin信号调控机制的最新进展进行综述,并展望其发展趋势。  相似文献   

2.
Mutations in either TSC1 or TSC2 cause tuberous sclerosis complex, an autosomal dominant disorder characterized by seizures, mental retardation, and benign tumors of the skin, brain, heart, and kidneys. Homologs for the TSC1 and TSC2 genes have been identified in mouse, rat, Fugu, Drosophila, and in the yeast Schizosaccharomyces pombe. Here we show that S. pombe lacking tsc1+ or tsc2+ have similar phenotypes including decreased arginine uptake, decreased expression of three amino acid permeases, and low intracellular levels of four members of the arginine biosynthesis pathway. Recently, the small GTPase Rheb was identified as a target of the GTPase-activating domain of tuberin in mammalian cells and in Drosophila. We show that the defect in arginine uptake in cells lacking tsc2+ is rescued by the expression of a dominant negative form of rhb1+, the Rheb homolog in S. pombe, but not by expressing wild-type rhb1+. Expression of the tsc2+ gene with a patient-derived mutation within the GAP domain did not rescue the arginine uptake defect in tsc2+ mutant yeast. Taken together, these findings support a model in which arginine uptake is regulated through tsc1+, tsc2+, and rhb1+ in S. pombe and also suggest a role for the Tsc1 and Tsc2 proteins in amino acid biosynthesis and sensing.  相似文献   

3.
Tuberous sclerosis is a multi-organ disorder characterized by the formation of benign tumors, called hamartomas, which affects more than 1 million people worldwide. The syndrome is initiated by a mutation in one of two tumor suppressor genes, TSC1 or TSC2, that encode for the proteins hamartin and tuberin, respectively. Herein, we demonstrate that tuberin binds and regulates the G2/M cyclin, cyclin B1. We have determined that this binding region encompasses a mutational hotspot within tuberin that is implicated in some of the most severe cases of TS. Mimicking a mutation found in a subset of patients with tuberous sclerosis, we found a significant reduction in the binding between tuberin and cyclin B1. Functionally, our data supports that tuberin plays a role in regulating the cellular localization of cyclin B1. These results demonstrate a novel and clinically relevant mechanism, where tuberin functions in mitotic onset.  相似文献   

4.
1. Tuberous sclerosis (TSC) is an autosomal dominant disease characterized by the formation of hamartomatous lesions in many organs, including brain, heart or kidneys. It has been found that TSC is caused by the mutation in one of two tumor suppressor genes: TSC1 or TSC2, encoding hamartin and tuberin, respectively. 2. According to Knudson's two-hit model of tumorigenesis, second-hit mutation and resulting loss of heterozygosity (LOH) of a tumor suppressor gene is necessary for tumor formation. In fact, LOH is commonly found in several types of hamartomas formed in the process of tuberous sclerosis, but, interestingly, not in brain lesions, containing characteristic giant cells. 3. In the present paper we review literature covering origination of giant cells and present several hypotheses explaining why in spite of the presence of hamartin and tuberin, brain lesions form in TSC patients.  相似文献   

5.
Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction and dermatological abnormalities. Mutations to either the TSC1 or TSC2 gene are responsible for the disease. The TSC1 gene encodes hamartin, a 130-kDa protein without significant homology to other known mammalian proteins. Analysis of the amino acid sequence of tuberin, the 200-kDa product of the TSC2 gene, identified a region with limited homology to GTPase-activating proteins. Previously, we demonstrated direct binding between tuberin and hamartin. Here we investigate this interaction in more detail. We show that the complex is predominantly cytosolic and may contain additional, as yet uncharacterized components alongside tuberin and hamartin. Furthermore, because oligomerization of the hamartin carboxyl-terminal coiled coil domain was inhibited by the presence of tuberin, we propose that tuberin acts as a chaperone, preventing hamartin self-aggregation.  相似文献   

6.
Tuberous sclerosis (TSC) is an autosomal dominant disease, caused by mutations in TSC1 or TSC2 genes, encoding hamartin and tuberin, respectively. The clinical picture of the disease is connected with the formation of hamartomas, mainly in the heart, kidneys and the brain. In three types of brain lesions: cortical tubers, subependymal nodules and subependymal giant-cell astrocytoma (SEGA) characteristic, so-called "giant cells" are found. In the present review we summarise immunohistochemical findings of two types of studies performed on giant cells aiming at establishing the expression of hamartin and tuberin level and determining the presence of neuron- or astrocyte-specific markers. Moreover, we support our argument with the summary of ultrastructural research done with the purpose of demonstrating structures characteristic of neural and/or glial cells. We conclude that giant cells in cortical tubers and SEGAs are the same undifferentiated cells that, depending on individual determination, can show neural or glial features.  相似文献   

7.
Mutations of the TSC1 and TSC2 genes give rise to the clinical disorder of tuberous sclerosis characterized by the development of hamartomas predominantly affecting the central nervous system, kidney, skin, lung, and heart. The function of the gene products, hamartin and tuberin, is not well understood but we have previously suggested a role in vesicular transport. To define the subcellular compartment(s) involved with these two proteins, biochemical characterization of hamartin and tuberin was performed in primary tissues and cell lines. Fractionation of cell lysates identified both proteins in the cytosolic, microsomal, and cytoskeletal compartments. In each of these fractions, hamartin and tuberin formed a stable complex in coimmunoprecipitation analyses. Further, they colocalized extensively in discrete, vesicular structures in the cytoplasm. Within the microsomal compartment, hamartin and tuberin behaved as peripheral membrane proteins that associate with the cytosolic leaflet of membranous domains. Immunoisolation of tuberin-bound vesicles using magnetic beads showed an enrichment of rap1, rab5, and caveolin-1, all of which have been found in specialized lipid microdomains, caveolae. Our data suggest that hamartin and tuberin are multicompartmental proteins that partially reside in caveolin-1-enriched structures and potentially affect their signaling.  相似文献   

8.
Tuberous sclerosis complex, an autosomal dominant disease caused by mutations in either TSC1 or TSC2, is characterized by the development of hamartomas in a variety of organs. The proteins encoded by TSC1 and TSC2, hamartin and tuberin, respectively, associate with each other forming a tight complex. Here we show that hamartin binds the neurofilament light chain and it is possible to recover the hamartin-tuberin complex over the neurofilament light chain rod domain spanning amino acids 93-156 by affinity precipitation. Homologous rod domains in other intermediate filaments such as neurofilament medium chain, alpha-internexin, vimentin, and desmin are not able to bind hamartin. In cultured cortical neurons, hamartin and tuberin co-localize with neurofilament light chain preferentially in the proximal to central growth cone region. Interestingly, in the distal part of the growth cone hamartin overlaps with the ezrin-radixin-moesin family of actin binding proteins, and we have validated the interaction of hamartin with moesin. These results demonstrate that hamartin may anchor neuronal intermediate filaments to the actin cytoskeleton, which may be critical for some of the CNS functions of the hamartin-tuberin complex, and abolishing this through mutations in TSC1 or TSC2 may lead to certain neurological manifestations associated with the disease.  相似文献   

9.
Tuberous sclerosis complex (TSC) is characterized by the formation of hamartomas in multiple organs resulting from mutations in the TSC1 or TSC2 gene. Their protein products, hamartin and tuberin, respectively, form a functional complex that affects cell growth, differentiation, and proliferation. Several lines of evidence, including renal tumors derived from TSC2+/- animals, suggest that the loss or inhibition of tuberin is associated with up-regulation of cyclin D1. As cyclin D1 can be regulated through the canonical Wnt/beta-catenin signaling pathway, we hypothesize that the cell proliferative effects of hamartin and tuberin are partly mediated through beta-catenin. In this study, total beta-catenin protein levels were found to be elevated in the TSC2-related renal tumors. Ectopic expression of hamartin and wild-type tuberin, but not mutant tuberin, reduced beta-catenin steady-state levels and its half-life. The TSC1-TSC2 complex also inhibited Wnt-1 stimulated Tcf/LEF luciferase reporter activity. This inhibition was eliminated by constitutively active beta-catenin but not by Disheveled, suggesting that hamartin and tuberin function at the level of the beta-catenin degradation complex. Indeed, hamartin and tuberin co-immunoprecipitated with glycogen synthase kinase 3 beta and Axin, components of this complex in a Wnt-1-dependent manner. Our data suggest that hamartin and tuberin negatively regulate beta-catenin stability and activity by participating in the beta-catenin degradation complex.  相似文献   

10.
Tuberous sclerosis (TSC) is an autosomal dominant disease characterized by the formation of hamartomatous lesions in many organs, including brain, heart or kidneys. It has been found that TSC is caused by the mutation in one of the two tumor suppressor genes: TSC1 or TSC2, encoding hamartin and tuberin, respectively. According to Knudson’s two-hit model of tumorigenesis, second-hit mutation and resulting loss of heterozygosity (LOH) of a tumor suppressor gene is necessary for tumor formation. In fact, LOH is commonly found in several types of hamartomas formed in the process of tuberous sclerosis, but, interestingly, not in brain lesions, containing characteristic giant cells. In this paper, we review literature covering origination of giant cells and present several hypotheses explaining why in spite of the presence of hamartin and tuberin, brain lesions form in TSC patients.  相似文献   

11.
Mutations in the genes TSC1 or TSC2 cause the autosomal dominantly inherited tumor suppressor syndrome tuberous sclerosis, which is characterized by the development of tumors, named hamartomas, in different organs. The TSC gene products, hamartin and tuberin, form a complex, of which tuberin is assumed to be the functional component. Both, hamartin and tuberin have been implicated in the control of the cell cycle by activating the cyclin-dependent kinase inhibitor p27 and in cell size regulation by inhibiting the mammalian target of rapamycin (mTOR) a regulator of the p70 ribosomal protein S6 kinase (p70S6K) and its target the ribosomal protein S6. The tuberin/hamartin complex was shown to protect p27 from protein degradation. Within the mTOR signaling pathway tuberin harbors GTPase activating (GAP) potential toward Rheb, which is a potent regulator of mTOR. In this study, we have analyzed the protein levels of tuberin, p27, cyclin D1, mTOR and phospho mTOR Ser2448 (activated mTOR), S6 and phospho S6 Ser240/244 (activated S6) and as controls α-tubulin and topoisomerase IIβ, in ten different cells, including primary normal cells, immortalized and transformed cell lines.  相似文献   

12.
Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.  相似文献   

13.
Tuberous Sclerosis Complex is a multisystem disorder exhibiting a wide range of manifestations characterized by tumour-like lesions called hamartomas in the brain, skin, eyes, heart, lungs and kidneys. Tuberous Sclerosis Complex is genetically determined with an autosomal dominant inheritance and is caused by inactivating mutations in either the TSC1 or TSC2 genes. TSC1/2 genes play a fundamental role in the regulation of phosphoinositide 3-kinase (PI3K) signalling pathway, inhibiting the mammalian target of rapamycin (mTOR) through activation of the GTPase activity of Rheb. Mutations in TSC1/2 genes impair the inhibitory function of the hamartin/tuberin complex, leading to phosphorylation of the downstream effectors of mTOR, p70 S6 kinase (S6K), ribosomal protein S6 and the elongation factor binding protein 4E-BP1, resulting in uncontrolled cell growth and tumourigenesis.  相似文献   

14.
The products of the TSC1 (hamartin) and TCS2 (tuberin) tumor suppressor genes negatively regulate cell growth by inhibiting mTOR signaling. Recent research has led to the postulation that tuberin and/or hamartin are involved in tumor migration, presumably through Rho activation. Here we show that LEF-8 cells, which contain a Y1571 missense mutation in tuberin, express higher Rac1 activity than tuberin negative and positive cells. We also provide evidence of obvious lamellipodia formation in LEF-8 cells. Since the production of TSC2Y1571H cannot form a hetero-complex with hamartin, we further analyzed another mutant, TSC2R611Q, which also lacks the ability to form a complex with hamartin. Introducing both forms of mutated TSC2 into COS-1 cells increased Rac1 activity as well as cell motility. We also found these two mutants interacted with Rac1. We further demonstrated that the introduction of mutated TSC2 into COS-1 cells can generate higher reactive oxygen species (ROS). These results indicate that loss-of-function mutated tuberin can activate Rac1 and thereby increase ROS production.  相似文献   

15.
Mutations in genes encoding either hamartin [TSC1 (tuberous sclerosis complex 1)] or tuberin (TSC2) result in a multisystem disorder characterized by the development of benign tumours and hamartomas in several organs. The TSC1 and TSC2 proteins form a complex that lies at the crossroad of many signalling pathways integrating the energy status of the cell with signals induced by nutrients and growth factors. The TSC1/2 complex is a critical negative regulator of mTORC1 [mTOR (mammalian target of rapamycin) complex 1], and by that controls anabolic processes to promote cell growth, proliferation and survival. In the present paper, we review recent evidence highlighting the notion that the TSC1/2 complex simultaneously controls mTOR-dependent and mTOR-independent signals critical for the balancing of cell proliferation and cell death.  相似文献   

16.
17.
E-cadherin is a WT1 target gene   总被引:5,自引:0,他引:5  
  相似文献   

18.
Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophosphorylated tuberin at the membrane, where tuberin exerts its GTPase-activating protein (GAP) activity to repress Rheb signaling. In response to growth signals, tuberin is phosphorylated by AKT and translocates to the cytosol, relieving Rheb repression. Phosphorylation of tuberin at serines 939 and 981 does not alter its intrinsic GAP activity toward Rheb but partitions tuberin to the cytosol, where it is bound by 14-3-3 proteins. Thus, tuberin bound by 14-3-3 in response to AKT phosphorylation is sequestered away from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the growth inhibitory effects of this tumor suppressor.  相似文献   

19.
Hamartin and tuberin are products of the tumor suppressor genes, TSC1 and TSC2, respectively. When mutated, a characteristic spectrum of tumor-like growths develop resulting in the syndrome of tuberous sclerosis complex. The phenotypes associated with TSC1 and TSC2 mutations are largely indistinguishable suggesting a common biochemical pathway. Indeed, hamartin and tuberin have been shown to interact stably in vitro and in vivo. Factors that regulate their interaction are likely critical to the understanding of disease pathogenesis. In this study, we showed that tuberin is phosphorylated at serine and tyrosine residues in response to serum and other factors, and it undergoes serial phosphorylation that can be detected by differences in electrophoretic mobilities. A disease-related TSC2 mutation (Y1571H) nearly abolished tuberin phosphorylation when stimulated with pervanadate. Expression of this mutant tuberin caused a marked reduction in TSC1-TSC2 interaction compared with wild-type protein and significantly curtailed the growth inhibitory effects of tuberin when overexpressed in COS1 cells, consistent with a loss of function mutation. Examination of a second pathologic mutation, P1675L, revealed a similar relationship between limited phosphorylation and reduced interaction with hamartin. Our data show for the first time that 1) tuberin is phosphorylated at tyrosine and serine residues, 2) TSC1-TSC2 interaction is regulated by tuberin phosphorylation, and 3) defective phosphorylation of tuberin is associated with loss of its tumor suppressor activity. These findings suggest that phosphorylation may be a key regulatory mechanism controlling TSC1-TSC2 function.  相似文献   

20.
Mutations in the tumor suppressor genes TSC1 and TSC2, encoding hamartin and tuberin, respectively, cause the tumor syndrome tuberous sclerosis with similar phenotypes. Until now, over 50 proteins have been demonstrated to interact with hamartin and/or tuberin. Besides tuberin, the proteins DOCK7, ezrin/radixin/moesin, FIP200, IKKbeta, Melted, Merlin, NADE(p75NTR), NF-L, Plk1 and TBC7 have been found to interact with hamartin. Whereas Plk1 and TBC7 have been demonstrated not to bind to tuberin, for all the other hamartin-interacting proteins the question, whether they can also bind to tuberin, has not been studied. Tuberin interacts with 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, AMPK, CaM, CRB3/PATJ, cyclin A, cyclins D1, D2, D3, Dsh, ERalpha, Erk, FoxO1, HERC1, HPV16 E6, HSCP-70, HSP70-1, MK2, NEK1, p27KIP1, Pam, PC1, PP2Ac, Rabaptin-5, Rheb, RxRalpha/VDR and SMAD2/3. 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, Dsh, FoxO1, HERC1, p27KIP1 and PP2Ac are known not to bind to hamartin. For the other tuberin-interacting proteins this question remains elusive. The proteins axin, Cdk1, cyclin B1, GADD34, GSK3, mTOR and RSK1 have been found to co-immunoprecipitate with both, hamartin and tuberin. The kinases Cdk1 and IKKbeta phosphorylate hamartin, Erk, Akt, MK2, AMPK and RSK1 phosphorylate tuberin, and GSK3 phosphorylates both, hamartin and tuberin. This detailed summary of protein interactions allows new insights into their relevance for the wide variety of different functions of hamartin and tuberin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号