首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of glycogen synthase kinase 3 (GSK3) has been shown to mediate axon growth during development and regeneration. Phosphorylation of GSK3 by the kinase Akt is well known to be the major mechanism by which GSK3 is inactivated. However, whether such regulatory mechanism of GSK3 inactivation is used in neurons to control axon growth has not been directly studied. Here by using GSK3 mutant mice, in which GSK3 is insensitive to Akt-mediated inactivation, we show that sensory axons regenerate normally in vitro and in vivo after peripheral axotomy. We also find that GSK3 in sensory neurons of the mutant mice is still inactivated in response to peripheral axotomy and such inactivation is required for sensory axon regeneration. Lastly, we provide evidence that GSK3 activity is negatively regulated by PI3K signaling in the mutant mice upon peripheral axotomy, and the PI3K–GSK3 pathway is functionally required for sensory axon regeneration. Together, these results indicate that in response to peripheral nerve injury GSK3 inactivation, regulated by an alternative mechanism independent of Akt-mediated phosphorylation, controls sensory axon regeneration.  相似文献   

2.
Accumulating evidence shows that Sirt1 regulates a variety of neurological functions through the deacetylation of many proteins besides histone; however, the literature on the relationship between Sirt1 and axonal outgrowth is limited. Here, we first demonstrated that Sirt1 was located in the axon, especially in the growth cone. Then, we found that genetic inhibition of Sirt1 retarded axonal development in embryonic hippocampal neurons, whereas genetic and pharmacologic upregulation of Sirt1 promoted not only the formation but also the elongation of axons. Sirt1 can deacetylate and thus activate Akt, and inhibition of Akt significantly reversed the axonogenesis induced by Sirt1 overexpression. We also found that Sirt1 inhibited the activity of glycogen synthase kinase 3 (GSK3), whereas activation of GSK3 could abolish the effect of Sirt1. These results suggest that Sirt1 promotes axonogenesis by deacetylating Akt and thereby activates the Akt/GSK3 pathway, which could be a promising therapeutic target for axonopathy.  相似文献   

3.
This study examined if there are interactions between two key proteins that oppositely regulate intrinsic apoptosis, X-linked inhibitor of apoptosis protein (XIAP), a key suppressor of apoptosis that binds to inhibit active caspases, and glycogen synthase kinase-3 (GSK3), which promotes intrinsic apoptosis. Immunoprecipitation of GSK3β revealed that XIAP associates with GSK3β, as do two other members of the IAP family, cIAP-1, and cIAP-2. Cell fractionation revealed that XIAP is predominantly cytosolic, cIAP-1 is predominantly nuclear and nearly all of the nuclear cIAP-1 and cIAP-2 are associated with GSK3. Expression of individual domains of XIAP demonstrated that the RING domain of XIAP associates with GSK3. Inhibition of GSK3 did not alter the binding of XIAP to active caspase-9 or caspase-3 after stimulation of apoptosis with staurosporine. However, inhibition of GSK3 reduced apoptosis and apoptosome formation, including the recruitments of caspase-9 and XIAP to Apaf-1, in response to staurosporine treatment. Cell free measurements of apoptosome-induced caspase-3 activation demonstrated that GSK3 acts upstream of the apoptosome to facilitate intrinsic apoptotic signaling. This facilitation was blocked by overexpression of XIAP. These findings indicate that the RING domain of XIAP (and probably cIAP-1 and cIAP-2) associates with GSK3, GSK3 acts upstream of the apoptosome to promote intrinsic apoptosis, and the association between XIAP and GSK3 may block the pro-apoptotic function of GSK3.  相似文献   

4.
It has been extensively described that neuronal differentiation involves the signalling through neurotrophin receptors to a Ras-dependent mitogen-activated protein kinase (MAPK) cascade. However, signalling pathways from other neuritogenic factors have not been well established. It has been reported that cAMP may activate protein kinase (PKA), and it has been shown that PKA-mediated stimulation of MAPK pathway regulates not only neuritogenesis but also survival. However, extracellular regulated kinases (ERKs) mediated pathways are not sufficient to explain all the processes which occur in neuronal differentiation. Our present data show that: in cAMP-mediated neuritogenesis, using the SH-SY5Y human neuroblastoma cell line, there exists a link between the activation of PKA and stimulation of phosphatidylinositol 3-kinase (PI3K). Both kinase activities are essential to the initial elongation steps. Surprisingly, this neuritogenic process appears to be independent of ERKs. While the activity of PI3K is essential for elongation and maintenance of neurites, its inhibition causes retraction. In this neurite retraction process, GSK3 is activated. Using both a pharmacological approach and gene transfer of a dominant negative form of GSK3, we conclude that this induced retraction is a GSK3-dependent process which in turn appears to be a common target for transduction pathways involved in lysophosphatidic acid-mediated and PI3K-mediated neurite retraction.  相似文献   

5.
PIP3 is involved in neuronal polarization and axon formation   总被引:1,自引:0,他引:1  
Recent experiments in various cell types such as mammalian neutrophils and Dictyostelium discoideum amoebae point to a key role for the lipid product of PI 3-kinase, PIP(3), in determining internal polarity. In neurons, as a consequence of the elongation of one neurite, the axon is specified and the cell acquires its polarity. To test the hypothesis that PI 3-kinase and PIP(3) may play a role in neuronal polarity, and especially in axon specification, we observed localization of PIP(3) visualized by Akt-PH-GFP in developing hippocampal neurons. We found that PIP(3) accumulates in the tip of the growing processes. This accumulation is inhibited by addition of PI 3-kinase inhibitors. Those inhibitors, consistently with a role of PIP(3) in process formation and elongation, delay the transition from stage 1 neurons to stage 3 neurons, and both axon formation and elongation. Moreover, when the immature neurite contacts a bead coated with laminin, a substrate known to induce axon specification, PIP(3) accumulates in its growth cone followed by a rapid elongation of the neurite. In such conditions, the addition of PI 3-kinase inhibitors inhibits both PIP(3) accumulation and future axon elongation. These results suggest that PIP(3) is involved in axon specification, possibly by stimulating neurite outgrowth. In addition, when a second neurite contacted the beads, this neurite rapidly elongates whereas the elongation of the first laminin-contacting neurite stops, consistently with the hypothesis of a negative feedback mechanism from the growing future axon to the other neurites.  相似文献   

6.
《Autophagy》2013,9(6):1036-1053
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.  相似文献   

7.
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.  相似文献   

8.
Chaperones are critical for the folding and regulation of a wide array of cellular proteins. Heat Shock Proteins (Hsps) are the most representative group of chaperones. Hsp90 represents up to 1–2% of soluble protein. Although the Hsp90 role is being studied in neurodegenerative diseases, its role in neuronal differentiation remains mostly unknown. Since neuronal polarity mechanisms depend on local stability and degradation, we asked whether Hsp90 could be a regulator of axonal polarity and growth. Thus, we studied the role of Hsp90 activity in a well established model of cultured hippocampal neurons using an Hsp90 specific inhibitor, 17-AAG. Our present data shows that Hsp90 inhibition at different developmental stages disturbs neuronal polarity formation or axonal elongation. Hsp90 inhibition during the first 3 h in culture promotes multiple axon morphology, while this inhibition after 3 h slows down axonal elongation. Hsp90 inhibition was accompanied by decreased Akt and GSK3 expression, as well as, a reduced Akt activity. In parallel, we detected an alteration of kinesin-1 subcellular distribution. Moreover, these effects were seconded by changes in Hsp70/Hsc70 subcellular localization that seem to compensate the lack of Hsp90 activity. In conclusion, our data strongly suggests that Hsp90 activity is necessary to control the expression, activity or location of specific kinases and motor proteins during the axon specification and axon elongation processes. Even more, our data demonstrate the existence of a “time-window” for axon specification in this model of cultured neurons after which the inhibition of Hsp90 only affects axonal elongation mechanisms.  相似文献   

9.
10.
Glycogen synthase kinase-3 (GSK3) is a key element in several signaling cascades that is known to be involved in both patterning and neuronal organization. It is, therefore, a good candidate to play a role in neural regeneration in planarians. We report the characterization of three GSK3 genes in Schmidtea mediterranea. Phylogenetic analysis shows that Smed-GSK3.1 is highly conserved compared to GSK3 sequences from other species, whereas Smed-GSK3.2 and Smed-GSK3.3 are more divergent. Treatment of regenerating planarians with 1-azakenpaullone, a synthetic GSK3 inhibitor, suggests that planarian GSK3s are essential for normal differentiation and morphogenesis of the nervous system. Cephalic ganglia appear smaller and disconnected in 1-azakenpaullone-treated animals, whereas visual axons are ectopically projected, and the pharynx does not regenerate properly. This phenotype is consistent with a role for Smed-GSK3s in neuronal polarization and axonal growth. Teresa Adell and Maria Marsal contributed equally to this work. An erratum to this article can be found at  相似文献   

11.
G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase whose dysfunction results in cognitive impairment and Alzheimer-like pathology, including tau hyperphosphorylation. However, the mechanisms whereby GRK5 influences tau phosphorylation remain incompletely understood. In the current study, we showed that GRK5 influenced the phosphorylation of tau via glycogen synthase kinase 3β (GSK3β). The activity of both tau and GSK3β in the hippocampus was increased in aged GRK5-knockout mice, which is consistent with what occurs in APP/PS1 transgenic mice. Furthermore, GRK5 regulated the activity of GSK3β and phosphorylated tau in vitro. Regardless of changes of GRK5 protein levels, tau hyperphosphorylation remained reduced after GSK3β activity was inhibited, suggesting that GRK5 may specifically influence tau hyperphosphorylation by modulating GSK3β activity. Taken together, our findings suggest that GRK5 deficiency contributes to the pathogenesis of Alzheimer's disease by influencing the hyperphosphorylation of tau through the activation of GSK3β.  相似文献   

12.
Divergent roles of GSK3 and CDK5 in APP processing   总被引:8,自引:0,他引:8  
Glycogen synthase kinase-3 (GSK3) and cyclin-dependent kinase 5 (CDK5) are related serine/threonine kinases that have been well studied for their role in tau hyperphosphorylation, however, little is known about their significance in APP processing. Here we report that GSK3 and CDK5 are involved in APP processing in a divergent manner. Specific inhibition of cellular GSK3 by lithium or GSK3beta antisense elicits a reduction in Abeta. Conversely, negative modulation of cellular CDK5 activity by CDK5 inhibitor, roscovitine, or CDK5 antisense stimulates Abeta production. Neither GSK3 nor CDK5 inhibition by these means significantly affected cellular APP levels or APP maturation. Moreover, oral administration of lithium significantly reduces Abeta production whereas direct ICV administration of roscovitine augmented Abeta production in the brains of PDAPP (APP(V717F)) mice. Our data support a function for both GSK3 and CDK5 in APP processing, further implicating these two kinases in the pathogenesis of Alzheimer's disease.  相似文献   

13.
ABSTRACT

Small molecules that regulate cell stemness have the potential to make a major contribution to regenerative medicine. In the course of screening for small molecules that affect stemness in mouse embryonic stem cells (mESCs), we discovered that NPD13432, an aurone derivative, promoted self-renewal of mESCs. Normally, mESCs start to differentiate upon withdrawal of 2i/LIF. However, cells treated with the compound continued to express endogenous Nanog, a pluripotency marker protein essential for sustaining the undifferentiated state, even in the absence of 2i/LIF. Biochemical characterization revealed that NPD13432 inhibited GSK3α and GSK3β with IC50 values of 92 nM and 310 nM, respectively, suggesting that the compound promotes self-renewal in mESCs by inhibiting GSK3. The chemical structure of the compound is unique among known molecules with this activity, providing an opportunity to develop new inhibitors of GSK3, as well as chemical tools for investigating cell stemness.  相似文献   

14.
Upon fertilization, the mammalian egg undergoes a precise series of signaling events that orchestrate its conversion into a zygote. Mouse eggs contain acentrosomal spindle poles when arrested at meiotic metaphase II. The meiotic spindle is thought to provide a scaffold that mediates spatial and temporal regulation of the signaling pathways orchestrating post-fertilization events. Many kinases have been found to be enriched at the MII meiotic spindle, such as Protein Kinase C (PKC), and are thought to have an important role in regulating signaling events initiated through fertilization. In this study phosphorylated PKCζ (p-PKCζ) and Glycogen Synthase Kinase 3β (GSK3β) were found to be enriched at both acentrosomal spindle poles and the kinetochore region. Phosphorylated PKCζ (p-PKCζ) was immunopurified from MII eggs and was found to co-localize with known microtubule stabilizing components found in somatic cells, including GSK3β and Partition deficit protein 6 (Par6). Both fluorescence resonance energy transfer (FRET) and immunofluorescence confirmed the existence and close association of these proteins with p-PKCζ at the meiotic spindle. When GSK3β is phosphorylated on ser9 its activity is inhibited and the spindle is stabilized. However, when GSK3β is dephosphorylated (on ser9) it becomes active and the spindle is destabilized. The mechanism by which p-PKCζ maintains spindle organization appears to be through GSK3β and suggests that p-PKCζ phosphorylates GSK3β on the ser9 position inactivating GSK3β and consequently maintaining spindle stability during meiotic metaphase arrest.  相似文献   

15.
Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant‐induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants‐induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine‐induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N‐terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine‐induced hyper‐locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine‐induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co‐activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors.  相似文献   

16.
Abnormally active glycogen synthase kinase‐3 (GSK3) contributes to pathological processes in multiple psychiatric and neurological disorders. Modeled in mice, this includes increasing susceptibility to dysregulation of mood‐relevant behaviors, impairing performance in several cognitive tasks and impairing adult hippocampal neural precursor cell (NPC) proliferation. These deficits are all evident in GSK3α/β knockin mice, in which serine‐to‐alanine mutations block the inhibitory serine phosphorylation regulation of both GSK3 isoforms, leaving GSK3 hyperactive. It was unknown if both GSK3 isoforms perform redundant actions in these processes, or if hyperactivity of one GSK3 isoform has a predominant effect. To test this, we examined GSK3α or GSK3β knockin mice in which only one isoform was mutated to a hyperactive form. Only GSK3β, not GSK3α, knockin mice displayed heightened vulnerability to the learned helplessness model of depression‐like behavior. Three cognitive measures impaired in GSK3α/β knockin mice showed differential regulation by GSK3 isoforms. Novel object recognition was impaired in GSK3β, not in GSK3α, knockin mice, whereas temporal order memory was not impaired in GSK3α or GSK3β knockin mice, and co‐ordinate spatial processing was impaired in both GSK3α and GSK3β knockin mice. Adult hippocampal NPC proliferation was severely impaired in GSK3β knockin mice, but not impaired in GSK3α knockin mice. Increased activity of GSK3β, in the absence of overexpression or disease pathology, is sufficient to impair mood regulation, novel object recognition and hippocampal NPC proliferation, whereas hyperactive GSK3α individually does not impair these processes. These results show that hyperactivity of the two GSK3 isoforms execute non‐redundant effects on these processes.  相似文献   

17.
糖原合成激酶3β(GSK3β)作为一种多功能的丝氨酸/苏氨酸蛋白激酶,通过其多元化的活性调节方式,参与肿瘤形成的Wnt/β-catenin、NF-κB等多个信号传导通路,其生物学作用与肿瘤细胞的生长、增殖及凋亡过程密切相关;但是GSK3β在不同类型肿瘤中承担的角色是相反的,如在消化系统肿瘤中起到促癌作用,在乳腺癌、肺癌等肿瘤中表现为抑制作用。总结近年来GSK3β在恶性肿瘤中的作用及研究现状做一综述。  相似文献   

18.
Background: Cholangiocarcinoma (CCA) is a type of hepatobiliary cancer characterized by uncontrolled cell proliferation, with a poor prognosis and high mortality. Nobiletin (NBT) is a promising anti-tumor compound derived from the peels of oranges and other citrus plants, citrus plant. But the effect of NBT on CCA remains unknown.Results: Our data showed that NBT suppressed CCA cell proliferation in vitro and in vivo. Colony formation and Edu assay indicated that NBT inhibited cell proliferation. Cell cycle analysis showed that NBT arrested the cell cycle in G0/G1 phase. Target prediction showed that GSK3β was a direct target. Western blot and immunofluorescence confirmed that NBT reduced the phosphorylation of GSK3β. The antiproliferative effect of NBT was intercepted in GSK3β knockdown CCA cells. The cellular thermal shift assay (CETSA) showed NBT directly bound to GSK3β. Finally, NBT showed an anti-proliferative effect in tumor-bearing mice with no hepatotoxicity.Conclusion: NBT could inhibit CCA proliferation, and the pharmacological activity of NBT in CCA was attributed to its direct binding to GSK3β. We suggested that NBT might be a potential natural medicine in CCA treatment.  相似文献   

19.
Seo YH  Jung HJ  Shin HT  Kim YM  Yim H  Chung HY  Lim IK  Yoon G 《Aging cell》2008,7(6):894-907
Glycogen biogenesis and its response to physiological stimuli have often been implicated in age-related diseases. However, their direct relationships to cell senescence and aging have not been clearly elucidated. Here, we report the central involvement of enhanced glycogenesis in cellular senescence. Glycogen accumulation, glycogen synthase (GS) activation, and glycogen synthase kinase 3 (GSK3) inactivation commonly occurred in diverse cellular senescence models, including the liver tissues of aging F344 rats. Subcytotoxic concentrations of GSK3 inhibitors (SB415286 and LiCl) were sufficient to induce cellular senescence with increased glycogenesis. Interestingly, the SB415286-induced glycogenesis was irreversible, as were increased levels of reactive oxygen species and gain of senescence phenotypes. Blocking GSK3 activity using siRNA or dominant negative mutant (GSK3beta-K85A) also effectively induced senescence phenotypes, and GS knock-down significantly attenuated the stress-induced senescence phenotypes. Taken together, these results clearly demonstrate that augmented glycogenesis is not only common, but is also directly linked to cellular senescence and aging, suggesting GSK3 and GS as novel modulators of senescence, and providing new insight into the metabolic backgrounds of aging and aging-related pathogenesis.  相似文献   

20.
Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号