首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of rat heart mitochondria with phosphate or mersalyl releases a number of proteins, including the mitochondrial creatine kinase (mt-CK). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the released proteins showed that phosphate is more selective than mersalyl in releasing mt-CK. The rebinding of mt-CK to mitochondria was selectively inhibited by adriamycin, which complexes membrane-bound cardiolipin. mt-CK activity and binding experiments have shown that intact mitochondria are able to bind approximately twice the amount of mt-CK they originally contain. Liver mitochondria bound heart mitochondria mt-CK to the same extent as creatine kinase-depleted heart mitochondria. mt-CK was bound by liposomes but only if they contained cardiolipin. The binding of mt-CK to cardiolipin-containing liposomes was inhibited by adriamycin. Phosphatidylcholine liposomes reconstituted with the purified ADP/ATP translocator failed to bind mt-CK.  相似文献   

2.
HeLa cell mitochondria were allowed to incorporate 3H-thymidine in a cell free system and the effect of ethidium bromide, cytosine arabinoside and cytosine arabinoside triphosphate on the labeling of mitochondrial DNA was studied. The labeled products, isolated by sedimentation velocity in CsCl-ethidium bromide two-step gradients, showed similar sedimentation profiles as in vivo labeled mtDNA. Cytosine arabinoside triphosphate and ethidium bromide strongly inhibited the labeling of mitochondrial DNA, whereas cytosine arabinoside appeared to be much less effective. Tritiated deoxycytidine was found to be incorporated by isolated mitochondria, whereas cytosine arabinoside was shown to enter the mitochondrial acid-soluble pool but not to be incorporated in acid-insoluble form. These results are in agreement with the previously reported findings of in vivo experiments.  相似文献   

3.
Well coupled mitochondria were isolated from transplantable chicken hepatoma induced by MC-29 virus. The mitochondrial phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal chicken liver. Glutamate dehydrogenase was undetectable in the tumor mitochondria. Oxypolarographic tests showed the following: glutamine oxidation was prominent in the tumor mitochondria and was mediated through an NAD-linked reaction, while mitochondria from the liver showed a feeble glutamine oxidation; glutamine oxidation by tumor mitochondria was inhibited either by aminooxyacetate, inhibitor of transaminases, or prior incubation of mitochondria with DON (6-diazo-5-oxonorleucine), which inhibited mitochondrial glutaminases. Bromofuroate, inhibitor of glutamate dehydrogenase, had little or no effect; and glutamate oxidation was also inhibited by aminooxyacetate, while it was not affected by DON. These findings clearly show a high glutamate oxidation activity in the hepatoma and indicate that the product of glutamine hydrolysis, glutamate, is catabolized via transamination in the mitochondria to supply ATP.  相似文献   

4.
The effect of insulin was studied as applied to the inhibited under conditions of adrenalectomy process of oxidative phosphorylation in the rat liver and heart mitochondria. It is established that adrenalectomy does not change oxidative activity of mitochondria but inhibits the process of phosphorylation, which results in the decreased values of the ADP/O coefficient and the respiratory control. Insulin administered to the adrenalectomized rats 3h before the experiments reduces the disturbed oxidative phosphorylation in mitochondria of the liver and heart by intensifying the degree of ADP phosphorylation.  相似文献   

5.
The present study examined the effect of dopamine, 6-hydroxydopamine (6-OHDA), and MPP(+) on the membrane permeability transition in brain mitochondria and on viability in PC12 cells. Dopamine and 6-hydroxydopamine induced the swelling and membrane potential change in mitochondria, which was inhibited by addition of antioxidant enzymes, SOD and catalase. In contrast, antioxidant enzymes did not reduce the effect of MPP(+) on mitochondrial swelling and membrane potential. Catecholamines enhanced the Ca(2+) uptake and release by mitochondria, and the addition of MPP(+) induced Ca(2+) release. Catecholamines induced a thiol oxidation in mitochondria that was decreased by antioxidant enzymes. MPP(+) showed a little effect on the cytochrome c release from mitochondria and did not induce thiol oxidation. Catecholamines and MPP(+) induced a cell death, including apoptosis, in PC12 cells that was inhibited by addition of antioxidant enzymes. The result suggests that the oxidation of dopamine and 6-hydroxydopamine could modulate the membrane permeability in brain mitochondria and induce PC12 cell death, which may be ascribed to oxidative stress. MPP(+) appears to exert a toxic effect on neuronal cells by the action, which is different from catecholamines.  相似文献   

6.
以长春花[Catharanthus roseus (L.) G.Don]幼苗为材料,在温室条件下研究了不同浓度色氨酸对20%海水处理14 d后长春花幼苗生长、线粒体细胞色素c氧化酶(CCO)活性、细胞超微结构及长春碱含量的影响.结果显示:(1)与对照相比,20%海水中加入不同浓度的色氨酸,长春花幼苗生长均受到进一步显著抑制,线粒体细胞色素c氧化酶活性下降,但幼苗长春碱含量显著增加.(2) 在20%海水中增加250和500 mg/L色氨酸时,叶绿体片层松散、变稀,色氨酸浓度增大到750 mg/L时,叶绿体变形,片层扭曲、变形,叶绿体模糊、濒临解体.研究表明,在20%海水中增加500 mg/L的色氨酸时,长春花生长受到抑制较小,叶绿体超微结构受损伤程度较轻,而长春碱含量提高幅度最大,从而较有利于长春花幼苗的生长和长春碱的积累.  相似文献   

7.
The effect of rotenone on respiration in pea cotyledon mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
Respiration utilizing NAD-linked substrates in mitochondria isolated from cotyledons of etiolated peas (Pisum sativum L. var. Homesteader) by sucrose density gradient centrifugation exhibited resistance to rotenone. The inhibited rate of α-ketoglutarate oxidation was equivalent to the recovered rate of malate oxidation. (The recovered rate is the rate following the transient inhibition by rotenone.) The inhibitory effect of rotenone on malate oxidation increased with increasing respiratory control ratios as the mitochondria developed. The cyanide-resistant and rotenone-resistant pathways followed different courses of development as cotyledons aged. The rotenone-resistant pathway transferred reducing equivalents to the cyanide-sensitive pathway. Malic enzyme was found to be inhibited competitively with respect to NAD by rotenone concentrations as low as 1.67 micromolar. In pea cotyledon mitochondria, rotenone was transformed into elliptone. This reduced its inhibitory effect on intact mitochondria. Malate dehydrogenase was not affected by rotenone or elliptone. However, elliptone inhibited malic enzyme to the same extent that rotenone did when NAD was the cofactor. The products of malate oxidation reflected the interaction between malic enzyme and malate dehydrogenase. Rotenone also inhibited the NADH dehydrogenase associated with malate dehydrogenase. Thus, rotenone seemed to exert its inhibitory effect on two enzymes of the electron transport chain of pea cotyledon mitochondria.  相似文献   

8.
The effect of osmotic stress on wheat (Triticum aestivum L.) mitochondrial activity and phospholipid composition was investigated. Preliminary growth measurements showed that osmotic stress (−0.25 or −0.5 megapascal external water potential) inhibited the rate of shoot dry matter accumulation while root dry matter accumulation was less sensitive. We have determined that differences in sensitivity to osmotic stress existed between tissues at the mitochondrial level. Mitochondria isolated from roots or shoots of stressed seedlings showed respiratory control and ADP/O ratios similar to control seedlings which indicates that stressed mitochondria were well coupled. However, under passive swelling conditions in a KCl reaction mixture, the rate and extent of valinomycin-induced swelling of shoot mitochondria were increased by osmotic stress while root mitochondria were largely unaffected. Active ion transport studies showed efflux transport by stressed-shoot mitochondria to be partially inhibited since mitochondrial contraction required the addition of N-ethylmaleimide or nigericin. Efflux ion transport by root mitochondria was not inhibited by osmotic stress which indicates that stress-induced changes in ion transport were largely limited to shoot mitochondria. Characterization of mitochondrial fatty acid and phospholipid composition showed an increase in the percentage of phosphatidylcholine in stressed shoot mitochondria compared to the control. Mitochondrial fatty acid composition was not markedly altered by stress. No significant changes in either the phospholipid or fatty acid composition of stressed root mitochondria were observed. Hence, these results suggest that a tissue-specific response to osmotic stress exists at the mitochondrial level.  相似文献   

9.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

10.
Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.  相似文献   

11.
Although the literature contains many studies on the function of UCP3, its role is still being debated. It has been hypothesized that UCP3 may mediate lipid hydroperoxide (LOOH) translocation across the mitochondrial inner membrane (MIM), thus protecting the mitochondrial matrix from this very aggressive molecule. However, no experiments on mitochondria have provided evidence in support of this hypothesis. Here, using mitochondria isolated from UCP3-null mice and their wild-type littermates, we demonstrate the following. (i) In the absence of free fatty acids, proton conductance did not differ between wild-type and UCP3-null mitochondria. Addition of arachidonic acid (AA) to such mitochondria induced an increase in proton conductance, with wild-type mitochondria showing greater enhancement. In wild-type mitochondria, the uncoupling effect of AA was significantly reduced both when the release of O2˙̄ in the matrix was inhibited and when the formation of LOOH was inhibited. In UCP3-null mitochondria, however, the uncoupling effect of AA was independent of the above mechanisms. (ii) In the presence of AA, wild-type mitochondria released significantly more LOOH compared with UCP3-null mitochondria. This difference was abolished both when UCP3 was inhibited by GDP and under a condition in which there was reduced LOOH formation on the matrix side of the MIM. These data demonstrate that UCP3 is involved both in mediating the translocation of LOOH across the MIM and in LOOH-dependent mitochondrial uncoupling.  相似文献   

12.
Abstract— The effects of altered osmolarity on respiration and fine structure were compared in isolated rat cerebral versus liver mitochondria.
Polarographic study of cerebral mitochondria in hypo-osmolar media showed inhibition of State 3 (ADP-dependent) respiration which was not reversed by dinitrophenol. In hyperosmolar media, State 3 respiration was transiently inhibited and State 4 (ADP-independent) respiration increased with the NAD-linked substrate pair, glutamate and malate. With succinate as substrate, respiration was not affected by moderate hyperosmolarity. In the most hyperosmolar medium, State 3 respiration was inhibited with both substrates.
In contrast to the results with cerebral mitochondria, State 4 respiration was increased in hypo-osmolar media and State 3 respiration was persistently inhibited in hyperosmolar media in liver mitochondria with both substrates.
In both cerebral and liver mitochondria, cytochrome c oxidase (EC 1.9.3.1.) activity was mildly inhibited in hypo-osmolar media and increased in hyperosmolar media.
Electron microscopy showed that liver mitochondria were swollen in hypo-osmolar media and condensed in hyperosmolar media. Cerebral mitochondria showed mild rarefaction in hypo-osmolar media and, in hyperosmolar media, more than half the mitochondria showed either no or minimal changes in fine structure.
Our results suggest that there are differences in metabolic control and structure between mitochondria from different cell types, which may be important in the cellular metabolic response to pathologic changes in water or osmolarity.  相似文献   

13.
Bean plants ( Phaseolus vulgaris ) were grown for 16–20 days with or without phosphate in Knop nutrient medium. It was found in previous experiments that for roots grown on a Pi-deficient medium respiration is mainly carried out by the cyanide-insensitive pathway. Mitochondria isolated from—Pi, roots had poor respiratory control and their respiration exhibited 62% inhibition by cyanide and was inhibited (30%) by salicylhydroxamic acid (SHAM). In contrast, mitochondria obtained with control (+Pi) roots had respiratory control and ADP/O ratios typical for succinate as the substrate; their respiration was inhibited to 95% by cyanide and insensitive to SHAM. The integrity of mitochondrial membranes was similar in both types of mitochondria. Cytochrome oxidase activity, however, was about 20% lower in -Pi mitochondria, but the cytochrome composition was the same in both types of mitochondria. The cytochrorae pathway was not operating at full capacity in mitochondria isolated from—Pi roots but the alternative oxidation pathway participated in a great part in mitochondrial respiration, similar to in vivo whole roots. The participation of the non-phosphorylating., alternative pathway decreased the respiratory control ratio in mitochondria and had an effect on the total adenine nucleotide pool and energy charge values which were lower (16 and 13% respectively) in -Pi roots. About 50% lower ADP and 20% lower ATP levels were observed whereas AMP levels were several times higher.  相似文献   

14.
Previously the authors have designed and synthesized a library of antioxidative glutathione analogues called UPF peptides which are superior to glutathione in hydroxyl radical elimination. This paper is a follow-up study which investigated the effects of the most promising members of the library (UPF1 and UPF17) on oxidative stress-related enzymes. At concentrations used in vivo experiments neither UPF peptide influenced the activity of glutathione peroxidase (GPx) when purified enzyme or erythrocyte lysate was used. At higher concentrations they inhibited GPx activity. UPF peptides had no effect on glutathione reductase (GR) activity. Also they, as well as glutathione itself, slightly increased MnSOD activity in human brain mitochondria and inhibited oxidative burst caused by neutrophil NAD(P)H oxidase. RT-PCR measurements showed that UPF1 and UPF17 have no effect on GPx and MnSOD expression level in human blood mononuclear cells. The results of this study confirm that investigated UPF peptides do not interfere with the enzymatic mechanisms of antioxidative defence and can be used as themselves or as a lead for the protector molecule design against excessive oxidative stress.  相似文献   

15.
Plant mitochondria differ from those of mammals, since they incorporate an alternative electron transport pathway, which branches at ubiquinol to an alternative oxidase (AOX), characteristically inhibited by salicylhydroxamic acid (SHAM). Another feature of plant mitochondria is that besides complex I (EC 1.6.5.3) they possess alternative NAD(P)H-dehydrogenases insensitive to rotenone. Many stress conditions are known to alter the expression of the alternative electron transport pathway in plant mitochondria. In the present study we investigated the effects of some thiol reagents and Ca(2+) on potato mitochondrial respiratory chain presenting different activities of the alternative respiratory components AOX and external NADH dehydrogenase, a condition induced by previous treatment of potato tubers (Solanum tuberosum L., cv. Bintje) to cold stress. The results showed that Ca(2+) presented an inhibitory effect on AOX pathway in potato mitochondria energized with NADH or succinate, which was only now observed when the cytochrome pathway was inhibited by cyanide. When the cytochrome pathway was functional, Ca(2+) stimulated the external NADH dehydrogenase. Diamide was a potent AOX inhibitor and this effect was only now observed when the cytochrome pathway was inactive, as was the case for the calcium ion. Mersalyl inhibited the externally located NADH dehydrogenase and had no effect on AOX activity. The results may represent an important function of Ca(2+) on the alternative mitochondrial enzymes NADH-DH(ext) and AOX.  相似文献   

16.
Effects of beta-pinene on yeast membrane functions.   总被引:8,自引:1,他引:7       下载免费PDF全文
S Uribe  J Ramirez    A Pea 《Journal of bacteriology》1985,161(3):1195-1200
The effects of beta-pinene on yeast cells were studied. This terpene inhibited respiration with glucose or ethanol as the substrate. The inhibition depended on the ratio of the terpene to the amount of yeast cells; for a fixed concentration of pinene, inhibition decreased as the amount of yeast cells increased. Pinene also inhibited the pumping of protons and K+ transport, but this inhibition was more marked with with ethanol than with glucose as the substrate, indicating the mitochondrial localization of the inhibition. The studies on isolated mitochondria showed a series of effects, starting with the disappearance of the respiratory control and deenergization of the organelles and followed by an inhibition of respiration at higher concentrations of the terpene. The effect on respiration could be localized to the cytochrome b region of the electron transport chain. No effect could be detected on the activity of ATPase. The effects can be ascribed to a localization of pinene on membranes which was also accompanied by a decrease in the fluorescence polarization of diphenyl hexatriene, probably meaning an increase in the fluidity of the membrane, localized preferentially to the mitochondria.  相似文献   

17.
The effects of 2-mercaptoacetate on the respiration rates induced by different substrates were studied in vitro in isolated liver mitochondria. With palmitoyl-L-carnitine or 2-oxoglutarate as the substrate, the ADP-stimulated respiration (State 3) was dose-dependently inhibited by 2-mercaptoacetate. with glutamate or succinate as the substrate. State-3 respiration was only slightly inhibited by 2-mercaptoacetate. In contrast, the oxidation rate of 3-hydroxybutyrate was competitively inhibited by 2-mercaptoacetate in both isolated mitochondria and submitochondrial particles. In uncoupled mitochondria and in mitochondria in which ATP- and GTP-dependent acyl-CoA biosynthesis was inhibited, the inhibitory effect of 2-mercaptoacetate on palmitoyl-L-carnitine oxidation was abolished; under the same conditions, however, inhibition of 3-hydroxybutyrate oxidation by 2-mercaptoacetate still persisted. These results led to the following conclusions: 2-mercaptoacetate itself enters the mitochondrial matrix, inhibits fatty acid oxidation through a mechanism requiring an energy-dependent activation of 2-mercaptoacetate and itself inhibits 3-hydroxybutyrate oxidation through a competitive inhibition of the membrane-bound 3-hydroxybutyrate dehydrogenase. This study also strongly suggests that the compound responsible for the inhibition of fatty acid oxidation is 2-mercaptoacetyl-CoA.  相似文献   

18.
The effect of fluorocitrate on oxidative reactions and energy production systems of rat liver mitochondria has been studied. It was shown that oxidation of endogenous substrates and malate with pyruvate as well as the phosphorylation of the added ADP were inhibited by fluorocitrate. Inhibition of oxygen consumption by fluorocitrate induced the efflux of Ca2+ ions from mitochondria and a decrease in the Ca(2+)-accumulating capacity. The effect of fluorocitrate on Ca2+ transport in mitochondria is due to activation of the Ca-efflux pathway in those sensitive to ruthenium red.  相似文献   

19.
Effects of Cd2+ and two complexes of bivalent cadmium with 1,3-bis(4-chlorbenzylidenamino)-guanidine and anabasine on ion permeability of the inner membrane and respiration of isolated rat liver mitochondria were studied. Starting from 5 microM, Cd2+ decreased state 3 and DNP-stimulated respiration of mitochondria and increased their state 4 respiration. At 30 microM, Cd2+ decreased state 4 respiration. The complexes, particularly complex of Cd2+ with 1,3-bis(4-chlorbenzylidenamino)-guanidine, inhibited the mitochondrial respiration at lower concentration of Cd2+. Nonenergized mitochondria incubated in media containing 125 mM of NH4NO3 or KNO3 showed more pronounced swelling in experiments with 10 microM of the complexes than with Cd2+. The complexes produced swelling of the mitochondria energized by 5 mM of succinate and incubated in medium containing 25 mM K-acetate and 100 mM sucrose. Uptake of 137-Cs by succinate-energized mitochondria in the presence of 10(-8) M of valinomycin was substantially decreased in experiments with 10 microM of the complexes than with Cd2+. Ruthenium red (7.5 microM) prevented this effect with 10 microM of complex of Cd2+ with 1,3-bis(4-chlorbenzylidenamino)-guanidine and especially complex of Cd2+ with anabasine and Cd2+. These results indicate that the cadmium organic complexes affect respiration and perturb ion permeability significantly stronger than Cd2+.  相似文献   

20.
Alvaro Rendon  Ruth Rott  Yoram Avi-Dor 《BBA》1980,590(3):290-299
Rat liver mitochondria or isolated mitoplasts were treated with the cross-linking agent, dimethylsuberimidate, under conditions (pH 7.5; 0°C) which were not detrimental for the coupling quality of the mitochondria and the effect was evaluated on a kinetic basis. When about 25% of the NH2-groups reacted, the mitochondria or the mitoplasts acquired complete osmotic stability. Succinate oxidation in state 4 was inhibited by about 30–35%. This effect was also observed when the organelles were amidinated by methylacetimidate, a monofunctional imidate which caused no osmotic stabilization. Uncouplers stimulated succinate oxidation in cross-linked mitochondria to the same extent as in the control, in contrast stimulation by ADP was suppressed. Accordingly, the rate of decay of the respiration-dependent cross-membrane proton gradient was only decreased by 25%, whereas the ATPase and adenine nucleotide translocase were strongly inhibited. In the cross-linked mitochondria, the extent of inhibition of the ATPase and of the translocase was found to be the same whether the assays were performed at 30°C (like the respiratory assay) or at 0°C. The effect of methylacetimidate treatment on these activities at the two temperatures was different. At 30°C, the ATPase was not inhibited and the extent of inhibition of ATP translocation was small. At 0°C, the two activities were nearly as much inhibited as in cross-linked mitochondria. Our results suggest that a considerable rigidity can be introduced in the coupling membrane by cross-linking, without a major loss in the initial step of energy conservation. However, the energy conserved in the proton gradient cannot be utilized for ATP synthesis, probably because of the restricted mobility of adenine nucleotide translocase in the cross-linked mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号