首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: γ-Aminobutyric acid (GABA) is thought to be a neurotransmitter in the vetebrate retina. We studied the voltage and Ca2+ dependency of the process of release of [3H]GABA from the retina of the teleost Eugenes plumieri, using a microsuperfusion technique. Two depolarizing agents, veratridine and high potassium, produced a concentration-dependent release of [3H]GABA. The veratridine effect was inhibited in Na+-free solution, but was not affected by 1 μM tetrodotoxin. A substantial inhibition (about 75%) of the veratridine-and potassium-stimulated release of [3H] GABA occurred in Ca2+-free medium. Inhibitors of the Ca2+ channel, such as Mg2+(20 mM), La3+ (0.1 mM), and methoxy-verapamil (4 μM-0.4 mM), inhibited the veratridine-and K+-stimulated release. However, Co2+ and Cd2+ caused a potentiation and no change of the K+-and veratridine-stimulated release, respectively. This release process is apparently specific, since both depolarizing agents were unable to release [3H]methionine, a nontransmitter amino acid, under the same experimental conditions. Autoradio-graphic studies with [3H]GABA, using the same incubation conditions as for the release experiments, showed a high density of silver grains over the horizontal cells with almost no accumulation by amacrine cells and Muller cells. β-Alanine and nipecotic acid were used as two relative specific inhibitors of the glial and neuronal GABA uptake mechanisms, respectively. Only a small heteroexchange with [3H]GABA was found with β-alanine, and no inhibition of the subsequent veratridine-stimulated release. On the other hand, nipecotic acid produced a strong heteroexchange with [3H]GABA and lacked the capacity to induce the veratridine-stimulated release of [3H]GABA. These results suggest a voltage-and Ca2+-dependent neuronal release of [3H]GABA from retina.  相似文献   

2.
Release of [3H]noradrenaline from rat hippocampal synaptosomes was triggered by pulses of 25 mM K+, 5 μM veratridine or superfusion with the Ca2+ ionophore A23187. GABA with bicuculline or chlordiazepoxide depressed the release of [3H]noradrenaline evoked by depolarisation but not by the Ca2+ ionophore. 8 Br-cAMP with [Ca2+]0 0.3 mM had no effect on spontaneous or K+-evoked release of [3H]noradrenaline and completely blocked the effect of chlordiazepoxide and GABA with bicuculline. With [Ca2+]0 1 mM 8 Br-cAMP enhanced spontaneous and K+-evoked release of [3H]noradrenaline, and reversed the depression caused by GABA with bicuculline. GABA alone evoked Ca2+-dependent release of [3H]noradrenaline which was sensitive to [Cl?]0. The results suggest that the GABAA-receptor mediated release of [3H]noradrenaline is due to depolarisation resulting from increased Cl? conductance whereas the depression of depolarisation-dependent release of [3H]noradrenaline by GABAB or benzodiazepine receptors is mediated by a cAMP-dependent decrease in the voltage-dependent Ca2+ conductance.  相似文献   

3.
Abstract— It has been reported that the release of GABA by high K+ is Ca2+-dependent while release induced by veratridine or electrical stimulation has been frequently found to be independent of Ca2+. To see the source of Ca2+-dependent and independent release of GABA, cortical slices which had accumulated [3H]GABA were exposed to 50 mm -K+ or 50 μm -veratridine for 48min. In the presence of Ca2+ the 2 agents released approx the same amount of [3H]GABA but tetrodotoxin (TTX) abolished release induced only by veratridine, while omission of Ca2+ reduced release induced only by 50mm -K+. Pre-exposure of the slices for 48min to 50mm -K+ in the presence of Ca2+ reduced the second release by 50mm -K+ by 77% and that by veratridine by 74%, suggesting that in the presence of Ca2+ the 2 depolarizing agents release [3H]GABA from the same pool. Pre-exposure to 50mm -K+ in the absence of Ca2+ reduced the second release by 50mm -K+ or by veratridine only by 37 and 27% respectively, indicating that most of the reduction in release was the result of a depletion of releasable [3H]GABA stores. The second exposure to 50mm -K+ in the absence of Ca2+ reduced the evoked release further, while exposure to veratridine in the absence of Ca2+, after depletion of the stores, enhanced release 2.7 times. Electrical stimulation (64 Hz, 2 ms, 40 mA, alternating polarity) during 24min in the presence of Ca” caused an initial 5-fold increase in efflux, which declined subsequently. In the absence of Ca2+, instead of a rapid increase, a slow but smaller increase in the efflux of [3H]GABA was found. TTX almost completely abolished the electrically evoked increase in release. Pre-treatment with 50mm -K+ reduced the electrically evoked release by 94% but electrical stimulation in the absence of Ca2+ after depletion of releasable stores doubled this release. Results suggest that in the presence of Ca2+, high K+, veratridine and electrical stimulation release [3H]GABA from the same Ca2+-dependent store, but in the absence of Ca2+ veratridine and electrical stimulation enhance the release from a Ca2+-independent store, probably as a result of an increased influx of Na+.  相似文献   

4.
The effect of veratridine on neurotransmitter release was studied using rat brain synaptosomes superfused at 37°C. Veratridine (5–75 M) caused a concentration-dependent release of [3H]GABA from prelabeled synaptosomes in the presence of 2.7 mM Ca2+. In the whole range of veratridine concentrations, the release of [3H]GABA elicited by the drug was substantially increased rather than decreased in the absence of Ca2+ or with Ca2+ concentrations of 0.45 and 0.9 mM. The release of the amino acid was inhibited more by 5.4 mM than by 2.7 mM Ca2+. The effect on endogenous (chemically measured) GABA was similar to that on [3H]GABA. The inhibitory effect of Ca2+ on the veratridine-induced release of [3H]GABA was consistently seen in a variety of experimental conditions except one, namely when the experiment was run at room temperature (22–23°C) rather than at physiological temperature (37°C). In fact, at 22–23°C the release of GABA evoked by the alkaloid was somewhat potentiated by Ca2+. At 37°C, glutamate appeared to behave similarly to GABA, whereas the veratridine-induced release of [3H]noradrenaline and [3H]dopamaine was largely Ca2+-dependent. The mechanism of the release of transmitters elicited by veratridine is discussed. It is concluded that the evoked release of GABA and glutamate is due more to the veratridine-induced depolarization (Na+ influx) than to the accompanying influx of Ca2+, and it is suggested that the inhibitory effect of Ca2+ on the overall release of amino acids is due to the antagonism exerted by the divalent cation on the veratridine action at the Na+ channel. In contrast, in the case of catecholamines, the influx of Ca2+ would have a prominent role in triggering exocytotic release, whereas the depolarization itself would have slight or no importance.  相似文献   

5.
It has been suggested that mitochondria might modify transmitter release through the control of intracellular Ca2+levels. Treatments known to inhibit Ca2+retention by mitochondria lead to an increased transmitter liberation in the absence of external Ca2+, both at the frog neuromuscular junction and from isolated nerve endings. Sodium ions stimulate Ca2+efflux from mitochondria isolated from excitable tissues. In the present study, the effect of increasing internal Na+ levels on [3H]γ-aminobutyric acid ([3H]GABa) release from isolated nerve endings is reported. Results show that the efflux of [3H]GABA from prelabeled synaptosomes is stimulated by ouabain, veratrine, gramicidin D, and K+-free medium, which increase the internal sodium concentration. This effect was not observed when Na+ was omitted from the incubation medium and it was independent of external Ca2+, the experiments having been performed in a Ca2+-free, EGTA-containing medium. Since preincubation of synaptosomes with 2,4-diaminobutyric acid did not prevent the stimulatory effect of increased internal Na+ levels on [3H]GABA efflux, it appears to be unrelated to an enhanced activity of the outward carrier-mediated GABA transport. These results suggest that the augmented release of [3H]GABA may be due to an increased Ca2+efflux from mitochondria eiicited by the accumulation of Na+ at the nerve endings. Sandoval M. E. Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization. J. Neurochem. 35 , 915–921 (1980).  相似文献   

6.
A possible role for protein kinases in the regulation of GABA exocytosis in nerve endings was investigated. The effect on the release of the radioactive neurotransmitter ([3H]GABA) from mouse brain synaptosomes of several protein kinase inhibitors was estimated after treatment with 37 mM K+ in the absence of external Na+, a condition under which [3H]GABA release is completely Ca2+ dependent. Among the inhibitors one group inhibit the kinases by binding to the catalytic site (i.e. staurosporine and H7) and others (TFP, sphingosine and W7) act on the regulatory site of protein kinases. The compounds of the second group, which are reported to inhibit calmodulin dependent events and the increase in cytosolic Ca2+ (Ca i ) induced by high K+ depolarization, were the most efficient inhibitors of [3H]GABA release. The selective inhibitor of CaMPK II, KN-62, also markedly diminished [3H]GABA release as well as the increase in Ca i induced by high K+. The kinase inhibitors from the first group that are unable to diminish the increase in Ca i induced by high K+ were also less efficient inhibitors of [3H]GABA release even at high concentrations. The present results indicate that at the doses tested all the drugs inhibit to some extent the release of the Ca2+ dependent fraction of [3H]GABA perhaps by inhibiting a CaMPK II mediated phosphorylation step triggered by depolarization and facilitated by the elevation of Ca i . In addition, the second group of antagonists and KN-62 inhibit the elevation of Ca i to high K+ thus exhibiting a higher efficiency on [3H]GABA release than the first group of antagonists.  相似文献   

7.
The release of [3H]GABA which is newly synthesized from [3H]l-glutamic acid (GLU) has been examined using striatal slices obtained from the rat brain. It was found that 8–10% of [3H]GLU transported was converted to [3H]GABA during the incubation of striatal slices in the presence of nipecotic acid (5 × 10?5 M). Nipecotic acid was added to the medium in order to prevent possible reuptake of [3H]GABA released during its synthesis, and it was found to have no significant effect on the formation of [3H]GABA from [3H]GLU as well as on the uptake of [3H]GLU. The application of high potassium (60 mM) stimulation exhibited a significant enhancement of the release of this newly synthesized [3H]GABA in a Ca2+ dependent manner. Kinetic analysis revealed that the evoked release of newly synthesized [3H]GABA was approximately two times greater than that of previously-loaded [3H]GABA, whereas no significant difference was observed in the spontaneous release. An immobilization stress in water failed to affect the release of newly synthesized [3H]GABA from striatal slices despite the occurrence of a significant enhancement of GABA formation in this structure.These results suggest that newly synthesized GABA may be preferentially released from its nerve terminals in response to the excitation of neurons at least in the striatum as compared with previously accumulated GABA.  相似文献   

8.
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established.  相似文献   

9.
Abstract: Release-regulating heterocarriers exist on brain nerve endings. We have investigated in this study the mechanisms involved in the neurotransmitter release evoked by GABA heterocarrier activation. GABA increased the basal release of [3H]acetylcholine and [3H]noradrenaline from rat hippocampal synaptosomes and of [3H]dopamine from striatal synaptosomes. These GABA effects, insensitive to GABA receptor antagonists, were prevented by inhibiting GABA uptake but not by blocking noradrenaline, choline, or dopamine transport. Lack of extracellular Ca2+ or addition of tetrodotoxin selectively abolished the GABA-evoked release of [3H]noradrenaline, leaving unaffected that of [3H]acetylcholine or [3H]dopamine. 1,2-Bis(2-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM) or vesamicol attenuated the release of [3H]acetylcholine elicited by GABA. Reserpine, but not BAPTA-AM, prevented the effect of GABA on [3H]dopamine release. Autoreceptor activation inhibited the GABA-evoked release of [3H]noradrenaline but not that of [3H]acetylcholine or [3H]dopamine. It is concluded that (a) the release of [3H]noradrenaline consequent to activation of GABA heterocarriers sited on noradrenergic terminals meets the criteria of a conventional exocytotic process, (b) the extracellular [Ca2+]-independent releases of [3H]acetylcholine and [3H]dopamine appear to occur from vesicles possibly through involvement of intraterminal Ca2+, and (c) autoreceptor activation only affects heterocarrier-mediated vesicular release linked to entry of extracellular Ca2+.  相似文献   

10.
Abstract: Mesencephalic cell cultures were used as a model to investigate the effects of interleukin-2 (IL-2) on evoked release of [3H]dopamine ([3H]DA) and γ-[3H]-aminobutyric acid ([3H]GABA). At low concentrations (10?13-10?12M), IL-2 potentiated [3H]DA release evoked by the excitatory amino acids N-methyl-D-aspartate (NMDA) and kainate, whereas higher IL-2 concentrations (10?9-10?8M) had no effect. IL-2 (10?14-10?8M) modulated K+-evoked [3H]DA release in a biphasic manner, with low concentrations (10?12-10?11M) of IL-2 potentiating and higher concentrations (10?9-10?8M) inhibiting K+-induced [3H]DA release. IL-2 (10?14-10?8M) by itself failed to alter spontaneous [3H]DA release. The inhibition by IL-2 of K+-evoked [3H]DA release was reversible and not due to neurotoxicity, as preexposure to IL-2 (10?8M) had no significant effect on the subsequent ability of dopaminergic cells to take up and to release [3H]DA. Under our experimental conditions, IL-2 (10?8 M) did not alter Ca2+-independent [3H]GABA release evoked by either K+ or NMDA. The results of this study indicate that IL-2 is able to potentiate [3H]DA release evoked by a number of different stimuli, including K+ depolarization and activation of both NMDA and non-NMDA receptor subtypes in mesencephalic cell cultures. IL-2 is active at very low concentrations, a finding that indicates a potent effect of IL-2 on dopaminergic neurons and implicates a physiological role for this cytokine in the modulation of DA release.  相似文献   

11.
Abstract: The functional significance of peroxynitrite in the release of [3H]GABA induced by nitric oxide (NO) liberated from NO generators was investigated using cerebral cortical neurons in primary culture. NO generators such as sodium nitroprusside (SNP) and S -nitroso- N -acetylpenicillamine (SNAP) increased [3H]GABA release in a dose-dependent manner. These increases in [3H]GABA release were significantly inhibited by hemoglobin, indicating that those NO generators evoke the release of [3H]GABA by the formation of NO. Two types of superoxide scavengers, Cu2+/Zn2+ superoxide dismutase and ceruloplasmin, significantly reduced the increase in [3H]GABA release induced by both SNP and SNAP, which assumes that NO requires superoxide to induce [3H]GABA release from the neurons. In addition, synthesized peroxynitrite induced a dose-dependent increase in [3H]GABA release from the neurons. These results indicate that NO-induced [3H]GABA release is mediated by peroxynitrite formed by the reaction of NO with superoxide.  相似文献   

12.
The effects of quinacrine on depolarization-induced [3H]acetylcholine (ACh) release and 45Ca2+ influx were examined in rat brain cortical synaptosomes. Quinacrine significantly reduced the stimulated release of [3H]ACh by high K+ and veratridine without affecting the spontaneous efflux from the preloaded synaptosomes. Quinacrine had no effect on ionophore A23187-induced release of [3H]ACh from the synaptosomes. Quinacrine (100 μM) markedly diminished the stimulated Ca2+ influx by veratridine and high K+ but not that by “Na+-free.” Trifluoperazine, a potent calmodulin antagonist, inhibited both Ca2+ influx and ACh release induced by the depolarizing agents. Inhibitory potencies of the two drugs on ACh release and Ca2+ influx were compared with the antagonism of calmodulin by two drugs, suggesting that the inhibition of depolarization-induced Ca2+ influx and ACh release by these drugs could not be explained by the antagonism of calmodulin.  相似文献   

13.
Abstract: The potent nicotinic agonist anatoxin-a elicits mecamylamine-sensitive [3H]dopamine release from striatal synaptosomes, and this action is both Na+ and Ca2+ dependent and is blocked by Cd2+. This suggests that stimulation of presynaptic nicotinic receptors results in Na+ influx and local depolarisation that activates voltage-sensitive Ca2+ channels, which in turn provide the Ca2+ for exocytosis. Here we have investigated the subtypes of Ca2+ channels implicated in this mechanism. [3H]Dopamine release evoked by anatoxin-a (1 µM) was partially blocked by 20 µM nifedipine, whereas KCl-evoked release was insensitive to the dihydropyridine. However, a 86Rb+ efflux assay of nicotinic receptor function suggested that nifedipine has a direct effect on the receptor, discrediting the involvement of L-type channels. The N-type Ca2+ channel blocker ω-conotoxin GVIA (1 µM) blocked anatoxin-a-evoked [3H]dopamine release by 60% but had no significant effect on 86Rb+ efflux; release evoked by both 15 and 25 mM KCl was inhibited by only 30%. The P-type channel blocker ω-agatoxin IVA (90 nM) also inhibited KCl-evoked release by ~30%, whereas anatoxin-a-evoked release was insensitive. The Q-type channel blocker ω-conotoxin MVIIC (1 µM) had no effect on either stimulus. These results suggest that presynaptic nicotinic receptors on striatal nerve terminals promote [3H]dopamine release by activation of N-type Ca2+ channels. In contrast, KCl-evoked [3H]dopamine release appears to involve both N-type and P-type channels.  相似文献   

14.
The effects of external pH (pH out) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pH out6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 M) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na i ] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca i ] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pH out 6. On the contrary, the external alkalinization (pH out 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pH out was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pH out changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pH out variations on [3H]GABA release were independent on the presence of HCO-3. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

15.
The influence of tetanus toxin in vitro on the release of exogenous [3H]GABA was studied with rat cerebral cortex slices. The influx, long-term accumulation and spontaneous efflux of GABA were not modified by the toxin. The release induced by high K+ (50 mM) medium from the superfused slices pretreated with the toxin was significantly inhibited in a time- and dose-dependent fashion. This release was attenuated during superfusion with Ca2+-free medium and the toxin no longer affected the remaining Ca2+-independent release. The release induced by Na+-free media did not require extracellular Ca2+ ions, and the toxin inhibited the release both with and without Ca2+. The toxin treatment had no marked influence on the ouabain (20 μM) or veratrine (25–50 μM)-induced release of GABA. The toxin treatment in vitro appears to modify some step(s) in the stimulated release of GABA without affecting its unstimulated membrane transport. Tetanus toxin may thus prove a valuable tool in studying the mechanisms of the release of GABA and possibly other inhibitory transmitters in synapses of the central nervous system.  相似文献   

16.
The turnover and release of endogenous and labeled GABA were followed in rat cortical slices after incubation with [3H]GABA. High performance liquid chromatography was used to measure endogenous GABA and to separate [3H]GABA from its metabolites. During superfusion with 3 mM K+ the slices rapidly lost their [3H]GABA content while maintaining constant GABA levels. Exposure to 50 mM K+ for 25 min caused an initial rapid rise in the release of both endogenous and [3H]GABA followed by a more rapid decline in the release of the latter. The specific activity of released GABA was two to four times higher than that in the slices. Depolarization lead to a net synthesis of GABA. The GABA-T inhibitor, gabaculine, (5 M) in vitro arrested the metabolism of [3H]GABA and rapidly doubled the GABA content but did not significantly increase the high K+ evoked release of endogenous GABA. In vivo pretreatment with 0.5 mM/kg gabaculine quadrupled GABA content and increased both the spontaneous and evoked release of endogenous GABA but while its Ca2+-dependent release increased by 50%, the Ca2+-independent release was enhanced sevenfold. This large Ca2+-independent release of GABA is likely to have different functional significance from the normal Ca2+-dependent release.  相似文献   

17.
The release of [3H]GABA from superfused slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitor aminooxyacetic acid (AOAA). In the latter case, an ion-exchange column chromatographic technique was used to separate [3H]GABA from tritiated metabolites released with it into the superfusate. In the absence of AOAA, omission of Ca2+ from the superfusion medium reduced the release of [3H]GABA evoked by a 30 mM K+ pulse by 81.6%, whereas in comparable experiments carried out in the presence of AOAA omission of Ca2+ reduced the K+-evoked release by only 23.5%. Similar results were obtained when a 50 mM K+ pulse was used, where-upon omission of Ca2+ reduced [3H]GABA release by 78.7% in the absence of AOAA as compared with a reduction of only 47.9% when AOAA was present. It is concluded that the presence of AOAA decreases the Ca2+-dependence of K+-evoked [3H]GABA release in this system.  相似文献   

18.

Background

Nitric oxide (NO) is an important presynaptic modulator of synaptic transmission. Here, we aimed to correlate the release of the major inhibitory neurotransmitter GABA with intracellular events occurring in rat brain axon terminals during their exposure to NO in the range of nanomolar–low micromolar concentrations.

Methods

Using [3H]GABA and fluorescent dyes (Fluo 4-AM, acridine orange and rhodamine 6G), the following parameters were evaluated: vesicular and cytosolic GABA pools, intracellular calcium concentration, synaptic vesicle acidification, and mitochondrial membrane potential. Diethylamine NONOate (DEA/NO) and S-nitroso-N-acetylpenicillamine (SNAP) were used as NO donors.

Results

DEA/NO and SNAP (in the presence of dithiothreitol (DTT)) stimulated external Ca2 +-independent [3H]GABA release, which was not attributed to a rise in intracellular calcium concentration. [3H]GABA release coincided with increasing GABA level in cytosol and decreasing the vesicular GABA content available for exocytotic release. There was a strong temporal correlation between NO-induced increase in cytosolic [GABA] and dissipation of both synaptic vesicle proton gradient and mitochondrial membrane potential. Dissipation was reversible, and recovery of both parameters correlated in time with re-accumulation of [3H]GABA into synaptic vesicles. The molar ratio of DTT to SNAP determined the rate and duration of the recovery processes.

Conclusions

We suggest that NO can stimulate GABA release via GABA transporter reversal resulting from increased GABA levels in cytosol. The latter is reversible and appears to be due to S-nitrosylation of key proteins, which affect the energy status of the pre-synapse.

General significance

Our findings provide new insight into molecular mechanism(s) underlying the presynaptic action of nitric oxide on inhibitory neurotransmission.  相似文献   

19.
Synaptosomes isolated from mouse brain were incubated with [14C]glutamate and [3H]-aminobutyric acid ([3H]GABA), and then [14C]GABA (newly synthesized GABA) and [3H]GABA (newly captured GABA) in the synaptosomes were analysed. (1) the [3H]GABA was rapidly degraded in the synaptosomes, (2) when the synaptosomes were treated with gabaculine (a potent inhibitor of GABA aminotransferase), the degradation of [3H]GABA was strongly inhibited, (3) the gabaculine treatment brough about a significant increase in Ca2+-independent release of [3H]GABA with no effect on Ca2+-dependent release, (4) no effects of gabaculine on degradation and release of [14C]GABA were observed. The results indicate that there are at least two pools of GABA in synaptosomes and support the possibilities that GABA taken up into a pool which is under the influence of GABA aminotransferase is released Ca2+-independently and that GABA synthesized in another pool which is not under the influence of GABA aminotransferase is released Ca2+-dependently.  相似文献   

20.
Abstract: The involvement of B-50, protein kinase C (PKC), and PKC-mediated B-50 phosphorylation in the mechanism of Ca2+-induced noradrenaline (NA) release was studied in highly purified rat cerebrocortical synaptosomes permeated with streptolysin-O. Under optimal permeation conditions, 12% of the total NA content (8.9 pmol of NA/mg of synaptosomal protein) was released in a largely (>60%) ATP-dependent manner as a result of an elevation of the free Ca2+ concentration from 10?8 to 10?5M Ca2+ The Ca2+ sensitivity in the micromolar range is identical for [3H]NA and endogenous NA release, indicating that Ca2+-induced [3H]NA release originates from vesicular pools in noradrenergic synaptosomes. Ca2+-induced NA release was inhibited by either N- or C-terminal-directed anti-B-50 antibodies, confirming a role of B-50 in the process of exocytosis. In addition, both anti-B-50 antibodies inhibited PKC-mediated B-50 phosphorylation with a similar difference in inhibitory potency as observed for NA release. However, in a number of experiments, evidence was obtained challenging a direct role of PKC and PKC-mediated B-50 phosphorylation in Ca2+-induced NA release. PKC pseudosubstrate PKC19-36, which inhibited B-50 phosphorylation (IC50 value, 10?5M), failed to inhibit Ca2+-induced NA release, even when added before the Ca2+ trigger. Similar results were obtained with PKC inhibitor H-7, whereas polymyxin B inhibited B-50 phosphorylation as well as Ca2+-induced NA release. Concerning the Ca2+ sensitivity, we demonstrate that PKC-mediated B-50 phosphorylation is initiated at a slightly higher Ca2+ concentration than NA release. Moreover, phorbol ester-induced PKC down-regulation was not paralleled by a decrease in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Finally, the Ca2+- and phorbol ester-induced NA release was found to be additive, suggesting that they stimulate release through different mechanisms. In summary, we show that B-50 is involved in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Evidence is presented challenging a role of PKC-mediated B-50 phosphorylation in the mechanism of NA exocytosis after Ca2+ influx. An involvement of PKC or PKC-mediated B-50 phosphorylation before the Ca2+ trigger is not ruled out. We suggest that the degree of B-50 phosphorylation, rather than its phosphorylation after PKC activation itself, is important in the molecular cascade after the Ca2+ influx resulting in exocytosis of NA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号