首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIPL and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib.  相似文献   

2.
ObjectivesDespite advances in the development of novel targeted therapies, the need for B-ALL alternative treatments has not been met. Anlotinib could blunt the proangiogenic activity of VEGFR, PDGFR, and FGFR, and has shown strong antitumor activities across multiple tumors. However, anlotinib cytotoxicity against B-ALL has not ever been evaluated, thus prompting us to initiate this study.MethodsExpression2Kinases program was used to identify potential treatment targets. Cell viability and apoptosis were determined by CCK-8 and Annexin V/PI staining kit, respectively. qRT-PCR and Western blotting were utilized to investigate the molecular mechanisms. In vivo antileukemia activity of Anlotinib was evaluated in a Ph+ B-ALL patient-Derived Xenograft (PDX) model.ResultsCompared with treatment-naive B-ALL cases, RR B-ALL patients had higher activities in the VEGF/VEGFR signaling and the PI3K/AKT/mTOR pathway. Exposure of Ph and Ph+ B-ALL cells to anlotinib resulted in significant cell viability reduction, apoptosis enhancement, and cell cycle arrest at G2/M phase. Importantly, anlotinib treatment led to remarkably decreased leukemia burdens and extended the survival period in a Ph+ B-ALL PDX model. Blockade of the role of the proangiogenic mediators, comprising VEGFR2, PDGFR-beta, and FGFR3, played a critical role in the cytotoxicity of anlotinib against Ph and Ph+ B-ALL. Moreover, anlotinib dampened the activity of PI3K/AKT/mTOR pathway that resides in the convergence of the three mentioned proangiogenic signals.ConclusionThis work provides impressive preclinical evidence of anlotinib against Ph and Ph+ B-ALL and raises a rationale for future clinical evaluation of this drug in the management of Ph and Ph+ B-ALL.  相似文献   

3.
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.  相似文献   

4.
5.
Overexpression of the oncogene c-Myc sensitizes many apoptotic signals through the activation of mitochondrial apoptosis pathway. However, the underling mechanism has not been clearly defined. Here, we investigated the effect of c-Myc expression on histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA)-induced apoptosis in rat fibroblast cells possessing various c-Myc levels. In Rat 1a cells overexpressing c-Myc, SAHA-induced enhanced the cell death response relative to the parental cells; whereas Rat 1a cells lacking c-Myc were refractory to SAHA treatment. We demonstrated that SAHA selectively induced the expression of pro-apoptotic BH3-only protein Bim, leading to Bax activation in c-Myc-expressing cells. Where c-Myc was absent, Bim, despite its induction by SAHA, failed to activate Bax and was unable to induce apoptosis. These results indicate that c-Myc is dispensable for Bim induction by SAHA, but is required for subsequent Bax activation. We further show that the expression levels of anti-apoptotic Bcl-2/Bcl2-xL were much elevated in Myc-null cells compared with the c-Myc-expressing cells; furthermore, depletion of Bcl-2/Bcl-xL in these cells restored the ability of SAHA to induce apoptosis by enhancing Bax activation. These data indicate that SAHA induces apoptosis through Bim-triggered Bax activation and that c-Myc regulates this process by modulating Bcl-2/Bcl-xL. Our results provide novel insight into the mechanism whereby Myc sensitizes the apoptotic signals; furthermore, our data suggest that cancer cells with deregulated Myc might be more sensitive to SAHA treatment.  相似文献   

6.
Carfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.Subject terms: Myeloma, Drug development  相似文献   

7.
Responsiveness of c-Myc oncogene to B cell receptor ligation has been implicated in the induction of apoptosis in transformed and normal immature B cells. These studies provided compelling evidence to link the c-Myc oncogene with the process of negative selection in B-lymphocytes. However, in addition to apoptosis, B cell-negative selection has been shown to occur by secondary Ig gene rearrangements, a mechanism called receptor editing. In this study, we assessed whether differential c-Myc responsiveness to B cell receptor (BCR) ligation is associated with the mechanism of negative selection in immature B cells. Using an in vitro bone marrow culture system and an Ig-transgenic mouse model (3-83) we show here that c-Myc is expressed at low levels throughout B cell development and that c-Myc responsiveness to BCR ligation is developmentally regulated and increased with maturation. Furthermore, we found that the competence to mount c-Myc responsiveness upon BCR ligation is important for the induction of apoptosis and had no effect on the process of receptor editing. Therefore, this study suggests an important role of c-Myc in promoting and/or maintaining B cell development and that compartmentalization of B cell tolerance may also be developmentally regulated by differential c-Myc responsiveness.  相似文献   

8.
《遗传学报》2021,48(7):582-594
Anlotinib, a novel multitarget tyrosine kinase inhibitor, has shown promising results in the management of various carcinomas. This study aimed to investigate the antitumor activity of anlotinib in oral squamous cell carcinoma(OSCC) and the underlying molecular mechanism. A retrospective clinical study revealed that anlotinib improved the median progression-free survival(m PFS) and median overall survival(m OS) of patients with recurrent and metastatic(R/M) OSCC, respectively. Functional studies revealed that anlotinib markedly inhibited in vitro proliferation of OSCC cells and impeded in vivo tumor growth of OSCC patientderived xenograft models. Mechanistically, RNA-sequencing identified that oxidative stress, oxidative phosphorylation and AKT/m TOR signaling were involved in anlotinib-treated OSCC cells. Anlotinib upregulated NADPH oxidase 5(NOX5) expression, elevated reactive oxygen species(ROS) production,impaired mitochondrial respiration, and promoted apoptosis. Moreover, anlotinb also inhibited phosphoAkt(p-AKT) expression and elevated p-e IF2α expression in OSCC cells. NOX5 knockdown attenuated these inhibitory effects and cytotoxicity in anlotinib-treated OSCC cells. Collectively, we demonstrated that anlotinib monotherapy demonstrated favorable anticancer activity and manageable toxicities in patients with R/M OSCC. The antitumor activity of anlotinib in OSCC may be mainly involved in the suppression of mitochondrial respiration via NOX5-mediated redox imbalance and the AKT/e IF2α pathway.  相似文献   

9.
Multiple myeloma (MM) remains fatal despite all available therapies. Initial treatment with conventional drugs such as, Dexamethasone (Dex) effectively induces MM cell death; however, prolonged drug exposures results in the development of chemoresistance. Our prior study demonstrated that 2-Methoxyestradiol (2ME2) induces apoptosis in multiple myeloma (MM) cells resistant to Dexamethasone (Dex). Here, we show the mechanism whereby 2ME2 overcomes Dex-resistance. The oligonucleotide array analysis demonstrates that Heat Shock Protein-27 (Hsp27) is upregulated in Dex-resistant, but not in Dex-sensitive MM cells. Proteomics analysis of Hsp27-immunocomplexes revealed the presence of actin in Dex-resistant, but not in Dex-sensitive cells. Biochemical interaction between Hsp27 and actin was examined by co-immunoprecipitation with anti-Hsp27 or actin Abs. Far western blot analysis using GST-Hsp27 fusion protein showed a direct association with actin both in vitro and in vivo. Importantly, 2ME2- or Bortezomib/Proteasome inhibitor (PS-341)-induced apoptosis in Dex-resistant MM cell lines and MM patient cells is associated with disruption of the Hsp27-actin complexes. Finally, blockade of Hsp27 by anti-sense strategy enhanced anti-MM activity of both 2ME2 and PS-341. These findings provide the clinical application of novel therapeutics targeting Hsp27 to improve patient outcome in MM.  相似文献   

10.
The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance.  相似文献   

11.
12.
13.
14.
Xie Z  Bi C  Cheong LL  Liu SC  Huang G  Zhou J  Yu Q  Chen CS  Chng WJ 《PloS one》2011,6(6):e21583
The 3-Deazaneplanocin A (DZNep), one of S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors, has shown antitumor activities in a broad range of solid tumors and acute myeloid leukemia. Here, we examined its effects on multiple myeloma (MM) cells and found that, at 500 nM, it potently inhibited growth and induced apoptosis in 2 of 8 MM cell lines. RNA from un-treated and DZNep treated cells was profiled by Affymetrix HG-U133 Plus 2.0 microarray and genes with a significant change in gene expression were determined by significance analysis of microarray (SAM) testing. ALOX5 was the most down-regulated gene (5.8-fold) in sensitive cells and was expressed at low level in resistant cells. The results were corroborated by quantitative RT-PCR. Western-blot analysis indicated ALOX5 was highly expressed only in sensitive cell line H929 and greatly decreased upon DZNep treatment. Ectopic expression of ALOX5 reduced sensitivity to DZNep in H929 cells. Furthermore, down-regulation of ALOX5 by RNA interference could also induce apoptosis in H929. Gene expression analysis on MM patient dataset indicated ALOX5 expression was significantly higher in MM patients compared to normal plasma cells. We also found that Bcl-2 was overexpressed in DZNep insensitive cells, and cotreatment with DZNep and ABT-737, a Bcl-2 family inhibitor, synergistically inhibited growth and induced apoptosis of DZNep insensitive MM cells. Taken together, this study shows one of mechanisms of the DZNep efficacy on MM correlates with its ability to down-regulate the ALOX5 levels. In addition, DZNep insensitivity might be associated with overexpression of Bcl-2, and the combination of ABT-737 and DZNep could synergistically induced apoptosis. These results suggest that DZNep may be exploited therapeutically for a subset of MM.  相似文献   

15.
Melphalan has been a mainstay of multiple myeloma (MM) therapy for many years. However, following treatment with this alkylator, malignant plasma cells usually escape both apoptosis and cell cycle control, and acquire drug-resistance resulting in tumor progression. Bendamustine is being used in MM patients refractory to conventional DNA-damaging agents, although the mechanisms driving this lack of cross-resistance are still undefined. Here, we investigated the molecular pathway of bendamustine-induced cell death in melphalan-sensitive and melphalan-resistant MM cell lines. Bendamustine affected cell survival resulting in secondary necrosis, and prompted cell death primarily through caspase-2 activation. Also, bendamustine blocked the cell cycle in the G2/M phase and induced micronucleation, erratic chromosome spreading and mitotic spindle perturbations in melphalan-resistant MM cells. In these cells, both Aurora kinase A (AURKA) and Polo-like kinase-1 (PLK-1), key components of the spindle-assembly checkpoint, were down-regulated following incubation with bendamustine, whereas levels of Cyclin B1 increased as a consequence of the prolonged mitotic arrest induced by the drug. These findings indicate that, at least in vitro, bendamustine drives cell death by promoting mitotic catastrophe in melphalan-resistant MM cells. Hence, activation of this alternative pathway of cell death may be a novel approach to the treatment of apoptosis-resistant myelomas.  相似文献   

16.
Interferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility for therapy. Here we show that IFN-alpha-induced apoptosis in the MM cell lines U266 and H929 was completely blocked by a specific inhibitor of Jak1. The mTOR inhibitor rapamycin mitigated apoptosis in U266 but potentiated it in H929 cells. IFN-alpha induced PS exposure, DeltaPsi(m) loss and pro-apoptotic conformational changes of Bak, but not of Bax, and was fully prevented by Mcl-1 overexpression in U266 cells. IFN-alpha treatment caused the release of cytochrome c from mitochondria to cytosol and consequently, a limited proteolytic processing of caspases. Apoptosis induced by IFN-alpha was only slightly prevented by caspase inhibitors. Levels of the BH3-only proteins PUMA and Bim increased during IFN-alpha treatment. Bim increase and apoptosis was prevented by transfection with the siRNA for Bim. PUMA-siRNA transfection reduced electroporation-induced apoptosis but had no effect on apoptosis triggered by IFN-alpha. The potentiating effect of rapamycin on apoptosis in H929 cells was associated to an increase in basal and IFN-alpha-induced Bim levels. Our results indicate that IFN-alpha causes apoptosis in myeloma cells through a moderate triggering of the mitochondrial route initiated by Bim and that mTOR inhibitors may be useful in IFN-alpha maintenance therapy of certain MM patients.  相似文献   

17.
Magnolol, a major bioactive component found in Magnolia officinalis with anti-inflammation and anti-oxidation activities as well as minimized cytotoxic effects. Although magnolol has a wide range of clinical applications, the anti-tumor activity of magnolol is not efficient. Herein, we reported the synthesis and anti-cancer activities of three novel magnolol analogues CT2-1, CT2-2, CT2-3, among which CT2-3 revealed more efficient anti-non-small cell lung cancer (NSCLC) activity than magnolol. Our data showed that CT2-3 could significantly inhibit the proliferation of human NSCLC cells in a dose-dependent manner. In addition, we revealed CT2-3 could induce cell cycle arrest through down-regulating mRNA expression of CDK4, CDK6 and cyclin D1. Moreover, we verified that CT2-3 could cause ROS generation, leading to apoptosis of human NSCLC cells. Further more, we also provided strong evidences that CT2-3 down-regulates the expression of c-Myc and topoisomerases, and contributes to the apoptosis of human NSCLC cells. Taken together, the current study is the first to report a promising new chemotherapeutic drug candidate CT2-3 that can efficiently eliminate human NSCLC cells through triggering cell cycle arrest as well as ROS-mediated and c-Myc/topoisomerases-mediated apoptosis.  相似文献   

18.
19.
EGCG [(-)-epigallocatechin-3-O-gallate], the major polyphenol of green tea, has cancer chemopreventive and chemotherapeutic activities. EGCG selectively inhibits cell growth and induces apoptosis in cancer cells without adversely affecting normal cells; however, the underlying molecular mechanism in vivo is unclear. In the present study, we show that EGCG-induced apoptotic activity is attributed to a lipid-raft clustering mediated through 67LR (67 kDa laminin receptor) that is significantly elevated in MM (multiple myeloma) cells relative to normal peripheral blood mononuclear cells, and that aSMase (acid sphingomyelinase) is critical for the lipid-raft clustering and the apoptotic cell death induced by EGCG. We also found that EGCG induces aSMase translocation to the plasma membrane and PKCδ (protein kinase Cδ) phosphorylation at Ser664, which was necessary for aSMase/ceramide signalling via 67LR. Additionally, orally administered EGCG activated PKCδ and aSMase in a murine MM xenograft model. These results elucidate a novel cell-death pathway triggered by EGCG for the specific killing of MM cells.  相似文献   

20.
BACKGROUND: Human multiple myeloma (MM) remains an incurable hematological malignancy. We have reported that beta-lapachone, a pure compound derived from a plant, can induce cell death in a variety of human carcinoma cells, including ovary, colon, lung, prostate, pancreas, and breast, suggesting a wide spectrum of anticancer activity. MATERIALS AND METHODS: We first studied antisurvival effects of beta-lapachone in human MM cells by colony formation assay. To determine whether the differential inhibition of colony formation occurs through antiproliferative activity, we performed MTT assays. The cytotoxicity of beta-lapachone on human peripheral blood mononuclear cells was also measured by MTT assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the propidium iodide staining procedure to determine the sub-GI fraction, Annexin-V staining for externalization of phosphatidylserine, and fragmentation of cellular genomic DNA subjected to gel electrophoresis. To investigate the mechanism of anti-MM activity, we examined Bcl-2 expression, cytochrome C release, and poly (ADP ribose) polymerase cleavage by Western blot assay. RESULTS: We found that beta-lapachone (less than 4 microM) inhibits cell survival and proliferation by triggering cell death with characteristics of apoptosis in ARH-77, HS Sultan, and MM.1S cell lines, in freshly derived patient MM cells (MM.As), MM cell lines resistant to dexamethasone (MM.1R), doxorubicin (DOX.40), mitoxantrone (MR.20), and mephalan (LR5). Importantly, after treatment with beta-lapachone, we observed no apoptosis in peripheral blood mononuclear cells in either quiescent or proliferative states, freshly isolated from healthy donors. In beta-lapachone treated ARH-77, cytochrome C was released from mitochondria to cytosol, and poly (ADP ribose) polymerase was cleaved, signature events of apoptosis. Finally, the apoptosis induced by beta-lapachone in MM cells was not blocked by either interleukin-6 or Bcl-2, which confer multidrug resistance in MM. CONCLUSIONS: Our results suggest potential therapeutic application of beta-lapachone against MM, particularly to overcome drug resistance in relapsed patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号