首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide (H2S), which is produced endogenously from L-cysteine, is an irritant with pro-nociceptive actions. We have used measurements of intracellular calcium concentration, electrophysiology and behavioral measurements to show that the somatic pronociceptive actions of H2S require TRPA1. A H2S donor, NaHS, activated TRPA1 expressed in CHO cells and stimulated DRG neurons isolated from Trpa1+/+ but not Trpa1−/− mice. TRPA1 activation by NaHS was pH dependent with increased activity at acidic pH. The midpoint of the relationship between NaHS EC50 values and external pH was pH 7.21, close to the expected dissociation constant for H2S (pKa 7.04). NaHS evoked single channel currents in inside-out and cell-attached membrane patches consistent with an intracellular site of action. In behavioral experiments, intraplantar administration of NaHS and L-cysteine evoked mechanical and cold hypersensitivities in Trpa1+/+ but not in Trpa1−/− mice. The sensitizing effects of L-cysteine in wild-type mice were inhibited by a cystathionine β-synthase inhibitor, D,L-propargylglycine (PAG), which inhibits H2S formation. Mechanical hypersensitivity evoked by intraplantar injections of LPS was prevented by PAG and the TRPA1 antagonist AP-18 and was absent in Trpa1−/− mice, indicating that H2S mediated stimulation of TRPA1 is necessary for the local pronociceptive effects of LPS. The pro-nociceptive effects of intraplantar NaHS were retained in Trpv1−/− mice ruling out TRPV1 as a molecular target. In behavioral studies, NaHS mediated sensitization was also inhibited by a T-type calcium channel inhibitor, mibefradil. In contrast to the effects of NaHS on somatic sensitivity, intracolonic NaHS administration evoked similar nociceptive effects in Trpa1+/+ and Trpa1−/− mice, suggesting that the visceral pro-nociceptive effects of H2S are independent of TRPA1. In electrophysiological studies, the depolarizing actions of H2S on isolated DRG neurons were inhibited by AP-18, but not by mibefradil indicating that the primary excitatory effect of H2S on DRG neurons is TRPA1 mediated depolarization.  相似文献   

2.
We have recently demonstrated that MAP kinase phosphatase 2 (MKP-2) deficient C57BL/6 mice, unlike their wild-type counterparts, are unable to control infection with the protozoan parasite Leishmania mexicana. Increased susceptibility was associated with elevated Arginase-1 levels and reduced iNOS activity in macrophages as well as a diminished TH1 response. By contrast, in the present study footpad infection of MKP-2−/− mice with L. major resulted in a healing response as measured by lesion size and parasite numbers similar to infected MKP-2+/+ mice. Analysis of immune responses following infection demonstrated a reduced TH1 response in MKP-2−/− mice with lower parasite specific serum IgG2b levels, a lower frequency of IFN-γ and TNF-α producing CD4+ and CD8+ T cells and lower antigen stimulated spleen cell IFN-γ production than their wild-type counterparts. However, infected MKP-2−/− mice also had similarly reduced levels of antigen induced spleen and lymph node cell IL-4 production compared with MKP-2+/+ mice as well as reduced levels of parasite-specific IgG1 in the serum, indicating a general T cell hypo-responsiveness. Consequently the overall TH1/TH2 balance was unaltered in MKP-2−/− compared with wild-type mice. Although non-stimulated MKP-2−/− macrophages were more permissive to L. major growth than macrophages from MKP-2+/+ mice, reflecting their reduced iNOS and increased Arginase-1 expression, LPS/IFN-γ activation was equally effective at controlling parasite growth in MKP-2−/− and MKP-2+/+ macrophages. Consequently, in the absence of any switch in the TH1/TH2 balance in MKP-2−/− mice, no significant change in disease phenotype was observed.  相似文献   

3.
Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2. level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2. level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2. production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme inhibition protects the podocytes and glomeruli from hHcys-induced oxidative stress and injury.  相似文献   

4.
Interleukin (IL)-22, an immune cell-derived cytokine whose receptor expression is restricted to non-immune cells (e.g. epithelial cells), can be anti-inflammatory and pro-inflammatory. Mice infected with the tapeworm Hymenolepis diminuta are protected from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Here we assessed expulsion of H. diminuta, the concomitant immune response and the outcome of DNBS-induced colitis in wild-type (WT) and IL-22 deficient mice (IL-22-/-) ± infection. Interleukin-22-/- mice had a mildly impaired ability to expel the worm and this correlated with reduced or delayed induction of TH2 immunity as measured by splenic and mesenteric lymph node production of IL-4, IL-5 and IL-13 and intestinal Muc-2 mRNA and goblet cell hyperplasia; in contrast, IL-25 increased in the small intestine of IL-22-/- mice 8 and 12 days post-infection compared to WT mice. In vitro experiments revealed that H. diminuta directly evoked epithelial production of IL-25 that was inhibited by recombinant IL-22. Also, IL-10 and markers of regulatory T cells were increased in IL-22-/- mice that displayed less DNBS (3 mg, ir. 72h)-induced colitis. Wild-type mice infected with H. diminuta were protected from colitis, as were infected IL-22-/- mice and the latter to a degree that they were almost indistinguishable from control, non-DNBS treated mice. Finally, treatment with anti-IL-25 antibodies exaggerated DNBS-induced colitis in IL-22-/- mice and blocked the anti-colitic effect of infection with H. diminuta. Thus, IL-22 is identified as an endogenous brake on helminth-elicited TH2 immunity, reducing the efficacy of expulsion of H. diminuta and limiting the effectiveness of the anti-colitic events mobilized following infection with H. diminuta in a non-permissive host.  相似文献   

5.
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer’s disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor–sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2−/− (Cnr2tm1Dgen/J) mice to produce a colony of J20 CNR2+/+ and J20 CNR2−/− mice. Seventeen J20 CNR2+/+ mice (12 females, 5 males) and 16 J20 CNR2−/− mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2−/− mice relative to CNR2+/+ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2−/− mice. Total tau was significantly suppressed in J20 CNR2−/− mice relative to J20 CNR2+/+ mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.  相似文献   

6.
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer’s disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor–sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2−/− (Cnr2tm1Dgen/J) mice to produce a colony of J20 CNR2+/+ and J20 CNR2−/− mice. Seventeen J20 CNR2+/+ mice (12 females, 5 males) and 16 J20 CNR2−/− mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2−/− mice relative to CNR2+/+ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2−/− mice. Total tau was significantly suppressed in J20 CNR2−/− mice relative to J20 CNR2+/+ mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.  相似文献   

7.
SerpinB2, also known as plasminogen activator inhibitor type 2, is a major product of activated monocytes/macrophages and is often strongly induced during infection and inflammation; however, its physiological function remains somewhat elusive. Herein we show that SerpinB2 is induced in peripheral blood mononuclear cells following infection of pigtail macaques with CCR5-utilizing (macrophage-tropic) SIVmac239, but not the rapidly pathogenic CXCR4-utilizing (T cell-tropic) SHIVmn229. To investigate the role of SerpinB2 in lentiviral infections, SerpinB2−/− mice were infected with EcoHIV, a chimeric HIV in which HIV gp120 has been replaced with gp80 from ecotropic murine leukemia virus. EcoHIV infected SerpinB2−/− mice produced significantly lower anti-gag IgG1 antibody titres than infected SerpinB2+/+ mice, and showed slightly delayed clearance of EcoHIV. Analyses of published microarray studies showed significantly higher levels of SerpinB2 mRNA in monocytes from HIV-1 infected patients when compared with uninfected controls, as well as a significant negative correlation between SerpinB2 and T-bet mRNA levels in peripheral blood mononuclear cells. These data illustrate that SerpinB2 can be induced by lentiviral infection in vivo and support the emerging notion that a physiological role of SerpinB2 is modulation of Th1/Th2 responses.  相似文献   

8.
Systemic administration of recombinant thrombomodulin (TM) confers radiation protection partly by accelerating hematopoietic recovery. The uniquely potent radioprotector gamma tocotrienol (GT3), in addition to being a strong antioxidant, inhibits the enzyme hydroxy-methyl-glutaryl-coenzyme A reductase (HMGCR) and thereby likely modulates the expression of TM. We hypothesized that the mechanism underlying the exceptional radioprotective properties of GT3 partly depends on the presence of endothelial TM. In vitro studies confirmed that ionizing radiation suppresses endothelial TM (about 40% at 4 hr after 5 Gy γ-irradiation) and that GT3 induces TM expression (about 2 fold at the mRNA level after 5 μM GT3 treatment for 4 hr). In vivo survival studies showed that GT3 was significantly more effective as a radioprotector in TM wild type (TM+/+) mice than in mice with low TM function (TMPro/-). After exposure to 9 Gy TBI, GT3 pre-treatment conferred 85% survival in TM+/+ mice compared to only 50% in TMPro/-. Thus, GT3-mediated radiation lethality protection is partly dependent on endothelial TM. Significant post-TBI recovery of hematopoietic cells, particularly leukocytes, was observed in TM+/+ mice (p = 0.003), but not in TMPro/- mice, despite the fact that GT3 induced higher levels of granulocyte colony stimulating factor (G-CSF) in TMPro/- mice (p = 0.0001). These data demonstrate a critical, G-CSF-independent, role for endothelial TM in GT3-mediated lethality protection and hematopoietic recovery after exposure to TBI and may point to new strategies to enhance the efficacy of current medical countermeasures in radiological/nuclear emergencies.  相似文献   

9.
Leukotriene B4 (LTB4) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB4. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and TH1/TH17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1−/− mice had delayed onset and less severe symptoms of EAE than BLT1+/+ mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1+/+, but not BLT1−/− mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-γ, TNF-α, IL-17 and IL-6 were impaired in BLT1−/− cells, as compared with BLT1+/+ cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and TH1/TH17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other TH17-mediated diseases.  相似文献   

10.
11.
12.
Tissue plasminogen activator (tPA) has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg) into plasmin. In this study, using plasminogen knockout (Plg-/-) mice and their Plg-native littermates (Plg+/+), we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group) were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo). A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticospinal tract (CST). Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p<0.01). BDA-positive axonal density of the CST originating from the contralesional cortex in the denervated side of the cervical gray matter was significantly reduced in Plg-/- mice compared with Plg+/+ mice (p<0.05). The behavioral outcome was highly correlated with the midline-crossing CST axonal density (R2>0.82, p<0.01). Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.  相似文献   

13.
We aimed to study the role of the nucleotide receptor P2Y2R in the development of experimental autoimmune uveitis (EAU). EAU was induced in P2Y2+/+ and P2Y2-/- mice by immunization with IRBP peptide or by adoptive transfer of in vitro restimulated semi-purified IRBP-specific enriched T lymphocytes from spleens and lymph nodes isolated from native C57Bl/6 or P2Y2+/+ and P2Y2-/- immunized mice. Clinical and histological scores were used to grade disease severity. Splenocytes and lymph node cell phenotypes were analyzed using flow cytometry. Semi-purified lymphocytes and MACS-purified CD4+ T lymphocytes from P2Y2+/+ and P2Y2-/- immunized mice were tested for proliferation and cytokine secretion. Our data show that clinical and histological scores were significantly decreased in IRBP-immunized P2Y2-/- mice as in P2Y2-/- mice adoptively transfered with enriched T lymphocytes from C57Bl/6 IRBP-immunized mice. In parallel, naïve C57Bl/6 mice adoptively transferred with T lymphocytes from P2Y2-/- IRBP-immunized mice also showed significantly less disease. No differences in term of spleen and lymph node cell recruitment or phenotype appeared between P2Y2-/- and P2Y2+/+ immunized mice. However, once restimulated in vitro with IRBP, P2Y2-/- T cells proliferate less and secrete less cytokines than the P2Y2+/+ one. We further found that antigen-presenting cells of P2Y2-/- immunized mice were responsible for this proliferation defect. Together our data show that P2Y2-/- mice are less susceptible to mount an autoimmune response against IRBP. Those results are in accordance with the danger model, which makes a link between autoreactive lymphocyte activation, cell migration and the release of danger signals such as extracellular nucleotides.  相似文献   

14.
Potential roles of the abasic site lyase activity associated with AlkB homolog 1 (ALKBH1) were assessed by studies focusing on the two cellular processes that create abasic sites as intermediates: base excision repair and class switch recombination. Alkbh1−/− pups (lacking exon 3) were born at a lower than expected frequency from heterozygous parents, suggesting a reduced survival rate and non-Mendelian inheritance, and they exhibited a gender bias in favor of males (70% males and 30% females). To study ALKBH1’s potential involvement in DNA repair, fibroblasts were isolated from Alkbh1−/− mice, spontaneously immortalized and tested for resistance to DNA damaging agents. Alkbh1−/− and isogenic cells expressing hALKBH1 showed no difference in survival to the DNA damaging agents methyl-methionine sulfate or H2O2. This result indicates that ALKBH1 does not play a major role in the base excision repair pathway. To assess ALKBH1’s role in class switch recombination, splenic B cells were isolated from Alkbh1−/− and Alkbh1+/+ mice and subjected to switching from IgM to IgG1. No differences were found in IgG1 switching, suggesting that Alkbh1 is not involved in class switch recombination of the immunoglobulin heavy chain during B lymphocyte activation.  相似文献   

15.
Ppard−/− mice exhibit smaller litter size compared with Ppard+/+ mice. To determine whether peroxisome proliferator-activated receptor-D (PPARD) could possibly influence this phenotype, the role of PPARD in testicular biology was examined. Atrophic testes and testicular degeneration were observed in Ppard−/− mice compared with Ppard+/+ mice, indicating that PPARD modulates spermatogenesis. Higher expression of p27 and decreased expression of proliferating cellular nuclear antigen in Sertoli cells were observed in Ppard+/+ mice as compared with Ppard−/− mice, and these were associated with decreased Sertoli cell number in Ppard+/+ mice. Cyclin D1 and cyclin D2 expression was lower in Ppard+/+ as compared with Ppard−/− mice. Ligand activation of PPARD inhibited proliferation of a mouse Sertoli cell line, TM4, and an inverse agonist of PPARD (DG172) rescued this effect. Temporal inhibition of extracellular signal-regulated kinase (ERK) activation by PPARD in the testis was observed in Ppard+/+ mice and was associated with decreased serum follicle-stimulating hormone and higher claudin-11 expression along the blood-testis barrier. PPARD-dependent ERK activation also altered expression of claudin-11, p27, cyclin D1, and cyclin D2 in TM4 cells, causing inhibition of cell proliferation, maturation, and formation of tight junctions in Sertoli cells, thus confirming a requirement for PPARD in accurate Sertoli cell function. Combined, these results reveal for the first time that PPARD regulates spermatogenesis by modulating the function of Sertoli cells during early testis development.  相似文献   

16.
Gut-dwelling helminthes induce potent IL-4 and IL-13 dominated type 2 T helper cell (TH2) immune responses, with IL-13 production being essential for Nippostrongylus brasiliensis expulsion. This TH2 response results in intestinal inflammation associated with local infiltration by T cells and macrophages. The resulting increased IL-4/IL-13 intestinal milieu drives goblet cell hyperplasia, alternative macrophage activation and smooth muscle cell hypercontraction. In this study we investigated how IL-4-promoted T cells contributed to the parasite induced effects in the intestine. This was achieved using pan T cell-specific IL-4 receptor alpha-deficient mice (iLckcreIL-4Rα−/lox) and IL-4Rα-responsive control mice. Global IL-4Rα−/− mice showed, as expected, impaired type 2 immunity to N. brasiliensis. Infected T cell-specific IL-4Rα-deficient mice showed comparable worm expulsion, goblet cell hyperplasia and IgE responses to control mice. However, impaired IL-4-promoted TH2 cells in T cell-specific IL-4Rα deficient mice led to strikingly reduced IL-4 production by mesenteric lymph node CD4+ T cells and reduced intestinal IL-4 and IL-13 levels, compared to control mice. This reduced IL-4/IL-13 response was associated with an impaired IL-4/IL-13-mediated smooth muscle cell hypercontractility, similar to that seen in global IL-4Rα−/− mice. These results demonstrate that IL-4-promoted T cell responses are not required for the resolution of a primary N. brasiliensis infection. However, they do contribute significantly to an important physiological manifestation of helminth infection; namely intestinal smooth muscle cell-driven hypercontractility.  相似文献   

17.
ObjectiveThe P301S mutation in exon 10 of the tau gene causes a hereditary tauopathy. While mitochondrial complex I inhibition has been linked to sporadic tauopathies. Piericidin A is a prototypical member of the group of the piericidins, a class of biologically active natural complex I inhibitors, isolated from streptomyces spp. with global distribution in marine and agricultural habitats. The aim of this study was to determine whether there is a pathogenic interaction of the environmental toxin piericidin A and the P301S mutation.MethodsTransgenic mice expressing human tau with the P301S-mutation (P301S+/+) and wild-type mice at 12 weeks of age were treated subcutaneously with vehicle (N = 10 P301S+/+, N = 7 wild-type) or piericidin A (N = 9 P301S+/+, N = 9 wild-type mice) at a dose of 0.5 mg/kg/d for a period of 28 days via osmotic minipumps. Tau pathology was measured by stereological counts of cells immunoreative with antibodies against phosphorylated tau (AD2, AT8, AT180, and AT100) and corresponding Western blot analysis.ResultsPiericidin A significantly increased the number of phospho-tau immunoreactive cells in the cerebral cortex in P301S+/+ mice, but only to a variable and mild extent in wild-type mice. Furthermore, piericidin A led to increased levels of pathologically phosphorylated tau only in P301S+/+ mice. While we observed no apparent cell loss in the frontal cortex, the synaptic density was reduced by piericidin A treatment in P301S+/+ mice.DiscussionThis study shows that exposure to piericidin A aggravates the course of genetically determined tau pathology, providing experimental support for the concept of gene-environment interaction in the etiology of tauopathies.  相似文献   

18.
19.
Diabetic neuropathy is a severe complication of long-standing diabetes and one of the major etiologies of neuropathic pain. Diabetes is associated with an increased formation of reactive oxygen species and the electrophilic dicarbonyl compound methylglyoxal (MG). Here we show that MG stimulates heterologously expressed TRPA1 in CHO cells and natively expressed TRPA1 in MDCK cells and DRG neurons. MG evokes [Ca2+]i-responses in TRPA1 expressing DRG neurons but is without effect in neurons cultured from Trpa1−/− mice. Consistent with a direct, intracellular action, we show that methylglyoxal is significantly more potent as a TRPA1 agonist when applied to the intracellular face of excised membrane patches than to intact cells. Local intraplantar administration of MG evokes a pain response in Trpa1+/+ but not in Trpa1−/− mice. Furthermore, persistently increased MG levels achieved by two weeks pharmacological inhibition of glyoxalase-1 (GLO-1), the rate-limiting enzyme responsible for detoxification of MG, evokes a progressive and marked thermal (cold and heat) and mechanical hypersensitivity in wildtype but not in Trpa1−/− mice. Our results thus demonstrate that TRPA1 is required both for the acute pain response evoked by topical MG and for the long-lasting pronociceptive effects associated with elevated MG in vivo. In contrast to our observations in DRG neurons, MG evokes indistinguishable [Ca2+]i-responses in pancreatic β-cells cultured from Trpa1+/+ and Trpa1−/− mice. In vivo, the TRPA1 antagonist HC030031 impairs glucose clearance in the glucose tolerance test both in Trpa1+/+ and Trpa1−/− mice, indicating a non-TRPA1 mediated effect and suggesting that results obtained with this compound should be interpreted with caution. Our results show that TRPA1 is the principal target for MG in sensory neurons but not in pancreatic β-cells and that activation of TRPA1 by MG produces a painful neuropathy with the behavioral hallmarks of diabetic neuropathy.  相似文献   

20.
Angiotensin-(1–7) [Ang-(1–7)] is a biologically active heptapeptide that may counterbalance the physiological actions of angiotensin II (Ang II) within the renin-angiotensin system (RAS). Here, we evaluated whether activation of the Mas receptor with the oral agonist, AVE 0991, would have renoprotective effects in a model of adriamycin (ADR)-induced nephropathy. We also evaluated whether the Mas receptor contributed for the protective effects of treatment with AT1 receptor blockers. ADR (10 mg/kg) induced significant renal injury and dysfunction that was maximal at day 14 after injection. Treatment with the Mas receptor agonist AVE 0991 improved renal function parameters, reduced urinary protein loss and attenuated histological changes. Renoprotection was associated with reduction in urinary levels of TGF-β. Similar renoprotection was observed after treatment with the AT1 receptor antagonist, Losartan. AT1 and Mas receptor mRNA levels dropped after ADR administration and treatment with losartan reestablished the expression of Mas receptor and increased the expression of ACE2. ADR-induced nephropathy was similar in wild type (Mas+/+) and Mas knockout (Mas −/−) mice, suggesting there was no endogenous role for Mas receptor activation. However, treatment with Losartan was able to reduce renal injury only in Mas+/+, but not in Mas −/− mice. Therefore, these findings suggest that exogenous activation of the Mas receptor protects from ADR-induced nephropathy and contributes to the beneficial effects of AT1 receptor blockade. Medications which target specifically the ACE2/Ang-(1–7)/Mas axis may offer new therapeutic opportunities to treat human nephropathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号