首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen is the key factor for plant survival and growth, especially in the desert. Stipagrostis pennata, a sand born drought-resistant plant, could colonize pioneerly in Gurbantunggut Desert during revegetation. One strategy for their environment adaptation was the rhizosheath formatted by root-hair, mucilaginous exudates, microbial components, and soil particles, for which not only provides a favorable living microenvironment but also supplies essential nutrients. To understand the relationship between microorganisms living in rhizosheaths and the nitrogen nutrition supply, the microbial diversity and nitrogenase activity was estimated during the growth of S. pennata. Five samples of the rhizosheath, which based on the development periods of the plant, regreen, flowering, filling, seed maturating, and withering period, were collected. The nitrogenase activity was estimated by acetylene reduction and the microbial diversity was analyzed by 16S rRNA high-throughput sequencing. The results showed that the nitrogenase activity was increased slowly during regreen to flowering, while reached a peak rapidly at filling sample and then decreased gradually. A total of 274 operational taxonomic units (OTUs) were identified and significant differences in community structure and composition at each growth period. Among them, the main phyla included Actinobacteria and Proteus, which were the most abundant phyla in all periods. In addition, the microbial diversity in the grain filling period was higher than other periods in view of the analysis of alpha diversity and beta diversity. Furthermore, principal component analysis (PCA) analysis showed that the microbial communities in the filling period was low in similarity with other periods. Most importantly, the OTUs associated with nitrogen fixation is the most during the filling period, involving Phagecidae and Fucoraceae. Overall, the study not only revealed the differences in nitrogenase activity among different developmental periods in S. pennata, but also explored the potential bridges between it and community structure and diversity of bacteria.  相似文献   

2.
【目的】研究新疆艾比湖湿地不同季节盐角草根际和非根际土壤固氮微生物的多样性和丰富度与环境因子的相关性,以期探究在荒漠化和盐渍化不断严重的艾比湖湿地中随着季节变化的固氮微生物群落对恢复生态功能起到的潜在作用,为后续的湿地保护和退化恢复工作提供理论支持和数据基础。【方法】应用Illumina HiSeq PE250测序技术,分析6个土壤样本固氮微生物的多样性,结合相关的理化因子并利用RDA分析法探究土壤理化性质和固氮微生物菌落结构及丰富度的相关性。【结果】艾比湖湿地盐角草植物根际土壤的固氮微生物多样性高于非根际土壤,7月的土壤固氮微生物多样性高于10月和4月的土壤。土杆菌属(Geobacter)、假单胞菌属(Pseudomonas)、固氮菌属(Azotobacter)和慢生根瘤菌属(Bradyrhizobium)等为盐角草根际和非根际土壤中的共同优势菌属。这些固氮微生物优势菌属隶属于变形菌门(Proteobacteria)和蓝藻门(Cyanobacteria),且相对丰富度占比为85%和10%,其余各菌门共占比较少,仅为5%。土壤中固氮微生物的优势菌群与碱解氮(AN)、全氮(TN)、速效钾(AK)和有效磷(TP)呈显著相关。【结论】随着时间的推移土壤样本中固氮微生物的多样性和群落结构也发了改变,同一时期植物根际与非根际土壤中固氮微生物的群落结构并不相同。土壤的环境因子与固氮细菌的群落结构和丰富度的相关性研究可以为艾比湖湿地的退化恢复提供数据基础和理论支持。  相似文献   

3.
In Inner Mongolia, steppe grasslands face desertification or degradation because of human over activity. One of the reasons for this condition is that croplands have been abandoned after inappropriate agricultural management. The soils in these croplands present heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, we assessed the molecular ecology of total and free-living nitrogen-fixing bacterial communities in soils from steppe grasslands and croplands that were abandoned for different periods (1, 5, and 25 years) and compared the degree of recovery. The abandoned croplands included in the study were natural restoration areas without human activity. Denaturing gradient gel electrophoresis and quantitative PCR (qPCR) were used to analyze the nifH and 16S rRNA genes to study free-living diazotrophs and the total bacterial community, respectively. The diversities of free-living nitrogen fixers and total bacteria were significantly different between each site (P<0.001). Neither the total bacteria nor nifH gene community structure of a cropland abandoned for 25 years was significantly different from those of steppe grasslands. In contrast, results of qPCR analysis of free-living nitrogen fixers and total bacteria showed significantly high abundance levels in steppe grassland (P<0.01 and P<0.03, respectively). In this study, the microbial communities and their gene abundances were assessed in croplands that had been abandoned for different periods. An understanding of how environmental factors and changes in microbial communities affect abandoned croplands could aid in appropriate soil management to optimize the structures of soil microorganisms.  相似文献   

4.
陈丽萍  陈青  赵辉  苏建宇 《生态学报》2020,40(9):3105-3114
以宁夏贺兰山东麓荒漠藻结皮为研究对象,对处于不同发育阶段的藻结皮中微生物群落结构及其演替进行了研究。结皮样品高通量测序结果分别得到521个16S rDNA序列操作分类单元(OTU)和64个18S rDNA序列OTU,表明藻结皮中原核微生物多样性远高于真核微生物;贺兰山东麓藻结皮中原核微生物分布于26个纲,Cyanobacteria在各个发育阶段中都是优势微生物类群,Actinobacteria、Chloroplast、Alphaproteobacteria和Bacilli在藻结皮发育的各个阶段相对丰度也较高;从属水平上分析,Bacillus、Leptolyngbya、Microcoleus、Microvirga、Chroococcidiopsis、Rubellimicrobium、Phormidium、Mastigocladopsis、Skermanella、Nostoc、Scytonema共11个属在各个发育阶段的藻结皮中都存在,只是出现了丰度的差异。Bacillus在藻结皮形成期、发育初期和发育中期相对丰度较大,成熟期丰度显著下降,而成熟期Microvirga丰度较前3个时期显著增加,表现出明显的细菌菌群演替现象。藻结皮样品中主要真核微生物分布于13个纲,其中Dothideomycetes和Pezizomycetes在各个发育阶段样品中丰度都很高,Agaricomycetes在形成期样品中相对丰度高达32.6%,但在藻结皮发育过程中其相对丰度迅速下降;原生生物的相对丰度在藻结皮发育过程中逐渐增加;4个发育阶段藻结皮样品中均未检测到真核微藻序列。4个发育阶段的藻结皮样品中有明确分类学信息的真核微生物共13个属,其中4个发育阶段中共有的为Coniothyrium、Dendryphion、Friedmanniomyces、Phloeopeccania、Sarocladium共5个属,其余8个属只在个别发育阶段样品中检出,表明在藻结皮发育过程中真核微生物的群落结构也发生着变化。藻结皮厚度、全氮含量及有机质含量是影响结皮层微生物群落组成的主要因素。  相似文献   

5.
[背景]关于高原生境轮作制度对土壤固氮微生物群落组成及多样性的影响研究尚少。[目的]深入认识攀西高原不同轮作制度对农田土壤肥力及土壤固氮微生物nifH基因群落结构与多样性的影响,以期建立合理的轮作制度。[方法]以凉山州冕宁县不同作物轮作制度[包括光叶紫花苕-烤烟(分轮作15年和20年两种,分别为G1和G2)、苦荞-烤烟(KQ)、大麦-烤烟(DM)和撂荒(CK)]的土壤为研究对象,通过化学分析和Illumina MiSeq技术,对土壤理化性质、土壤固氮微生物nifH基因多样性及群落组成进行分析。[结果]撂荒土壤全氮、铵态氮、硝态氮、有机碳和含水量最显著(P<0.05)。KQ轮作下土壤有效磷和速效钾分别提高了43.0%和2.60%,而DM轮作下的土壤理化性质均下降。土壤固氮酶活以撂荒土壤最高,G2轮作最低。土壤固氮微生物nifH基因多样性以G1轮作最高、G2轮作最低,门水平上以变形菌门(Proteobacteria)是优势共有nifH基因类群,相对丰度占群落的63.0%-92.4%;属水平上,偶氮氢单胞菌属(Azohydromonas)是不同轮作制度下的优势物种,慢生根瘤属(Brad...  相似文献   

6.
The solitary ascidian Styela plicata is an introduced species in harbors of temperate and tropical oceans around the world. The invasive potential of this species has been studied through reproductive biology and population genetics but no study has yet examined the microbial diversity associated with this ascidian and its potential role in host ecology and invasiveness. Here, we used 16S rRNA gene tag pyrosequencing and transmission electron microscopy to characterize the abundance, diversity and host-specificity of bacteria associated with 3 Mediterranean individuals of S. plicata. Microscopy revealed low bacterial abundance in the inner tunic and their absence from gonad tissues, while pyrosequencing revealed a high diversity of S. plicata-associated bacteria (284 OTUs from 16 microbial phyla) in the inner tunic. The core symbiont community was small and consisted of 16 OTUs present in all S. plicata hosts. This core community included a recently described ascidian symbiont (Hasllibacter halocynthiae) and several known sponge and coral symbionts, including a strictly anaerobic Chloroflexi lineage. Most recovered bacterial OTUs (79.6 %) were present in single S. plicata individuals and statistical analyses of genetic diversity and community structure confirmed high variability of bacterial communities among host individuals. These results suggest that diverse and variable bacterial communities inhabit the tunic of S. plicata, including environmental and host-associated bacterial lineages that appear to be re-established each host generation. We hypothesize that bacterial communities in S. plicata are dynamic and have the potential to aid host acclimation to new habitats by establishing relationships with beneficial, locally sourced bacteria.  相似文献   

7.
【目的】探究不同生境巨菌草内生固氮菌群落组成多样性及其分异规律。【方法】采用高通量测序固氮酶nif H标靶基因方法,研究了我国6个典型地区的巨菌草内生固氮菌群,包括福建闽侯县、新疆墨玉县、内蒙古阿拉善左旗、青海贵德县、甘肃安定区、海南那大镇,结合地理气候因子统计,分析了固氮菌多样性的环境驱动机制。【结果】共获得64122条nif H基因的有效序列,640个OTUs,归属于6个门、10个纲、17个目、24个科、33个属和39个种。不同地区巨菌草中优势内生固氮菌群的种类和丰度存在较大的差异。在门水平上,福州闽侯县、甘肃安定区、新疆墨玉县、内蒙古阿拉善左旗和青海贵德县5个地区的优势菌门均为变形菌门,海南那大镇的优势菌门为变形菌门和蓝藻菌门;属水平上,不同地区巨菌草最优势内生固氮菌类群分别为:福州闽侯县(变形菌门中未定属,80.56%);新疆墨玉县(变形菌门中未定属,33.14%);内蒙古阿拉善左旗(变形菌门中未定属,76.23%);甘肃安定区(α-变形菌纲中的未定属,53.78%);海南那大镇(变形菌门中未定属,38.37%);青海贵德县(变形菌门中未定属,46.12%)。Alpha多样性和Beta多样性分析表明,不同地区巨菌草内生固氮菌群落的多样性存在较大的差异,海南那大镇样本中巨菌草各类内生固氮菌群的多样性及丰富度最高,福建闽侯县样本中巨菌草各类内生固氮菌群的多样性及丰富度最低。典范对应分析(CCA)结果表明,年均降雨量和年均气温是影响巨菌草内生固氮菌群变化的主要因素,其次是土壤有机质、土壤全氮和土壤p H。【结论】不同地区巨菌草内生固氮菌群落的组成及丰度存在着较大的差异,海南那大镇巨菌草内生固氮菌群的种类及相对丰度较高,本研究可为巨菌草内生固氮菌群的资源开发及其固氮微生物肥料的菌种选育和生产应用提供理论支持。  相似文献   

8.
Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19–121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.  相似文献   

9.
Microbial growth on meat to unacceptable levels contributes significantly to change meat structure, color and flavor and to cause meat spoilage. The types of microorganisms initially present in meat depend on several factors and multiple sources of contamination can be identified. The aims of this study were to evaluate the microbial diversity in beefsteaks before and after aerobic storage at 4°C and to investigate the sources of microbial contamination by examining the microbiota of carcasses wherefrom the steaks originated and of the processing environment where the beef was handled. Carcass, environmental (processing plant) and meat samples were analyzed by culture-independent high-throughput sequencing of 16S rRNA gene amplicons. The microbiota of carcass swabs was very complex, including more than 600 operational taxonomic units (OTUs) belonging to 15 different phyla. A significant association was found between beef microbiota and specific beef cuts (P<0.01) indicating that different cuts of the same carcass can influence the microbial contamination of beef. Despite the initially high complexity of the carcass microbiota, the steaks after aerobic storage at 4°C showed a dramatic decrease in microbial complexity. Pseudomonas sp. and Brochothrix thermosphacta were the main contaminants, and Acinetobacter, Psychrobacter and Enterobacteriaceae were also found. Comparing the relative abundance of OTUs in the different samples it was shown that abundant OTUs in beefsteaks after storage occurred in the corresponding carcass. However, the abundance of these same OTUs clearly increased in environmental samples taken in the processing plant suggesting that spoilage-associated microbial species originate from carcasses, they are carried to the processing environment where the meat is handled and there they become a resident microbiota. Such microbiota is then further spread on meat when it is handled and it represents the starting microbial association wherefrom the most efficiently growing microbial species take over during storage and can cause spoilage.  相似文献   

10.
In this study, for the first time the diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis collected from the Sousern Basin of Lake Baikal was investigated employing cultivation-independent approaches. In total, 102 bacterial 16S rRNA clones were screened using restriction fragment length polymorphism (RFLP) and 30 were selected for sequencing. BLASTN and phylogenetic analysis based on near full length 16S rDNA sequences showed that 22 operational taxonomic units (OTUs) were clustered in six known phyla: Actinobacteria (8 OTUs), alpha-Proteobacteria (4 OTUs), beta-Proteobacteria (4 OTUs), Verrucomicrobia (4 OTUs), Nitrospiracea (1 OTU) and Bacteroidetes (1 OTU). Remarkably all phylotypes were affiliated to uncultured microorganisms, however, all alpha-Proteobacteria sequences were closely related to bacteria derived from the freshwater sponge Spongilla lacustris. Our results reveal a high diversity in the L. baicalensis bacterial community and provide an insight into microbial ecology and diversity within freshwater sponges inhabiting the ancient Lake Baikal ecosystem.  相似文献   

11.
Bacterial communities of marine sponges are believed to be an important partner for host survival but remain poorly studied. Sponges show difference in richness and abundance of microbial population inhabiting them. Three marine sponges belonging to the species of Pione vastifica, Siphonochalina siphonella and Suberea mollis were collected from Red sea in Jeddah and were investigated using high throughput sequencing. Highly diverse communities containing 105 OTUs were identified in S. mollis host. Only 61 and 43 OTUs were found in P. vastifica and S. siphonella respectively. We identified 10 different bacterial phyla and 31 genera using 27,356 sequences. Most of the OTUs belong to phylum Proteobacteria (29%–99%) comprising of Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria where later two were only detected in HMA sponge, S. mollis. A number of 16S rRNA sequences (25%) were not identified to phylum level and may be novel taxa. Richness of bacterial community and Shannon, Simpson diversity revealed that sponge S. mollis harbors high diversity compared to other two LMA sponges. Dominance of Proteobacteria in sponges may indicate an ecological significance of this phylum in the Red sea sponges. These differences in bacterial composition may be due to difference in location site or host responses to environmental conditions. To the best of our knowledge, the microbial communities of these sponges have never been studied before and this is first attempt to unravel bacterial diversity using PCR-based 454-pyrosequencing method.  相似文献   

12.
Cyanobacterial blooms are intensifying global ecological hazards. The fine structure and dynamics of bloom community are critical to understanding bloom development but little understood. Here, the questions whether dominant bloomers have high diversity and whether dominant OTUs (operational taxonomical units) compete with one another were addressed. 16S rRNA gene amplicons from an annual bloom at five locations in Harsha Lake (Ohio, USA) showed cyanobacteria were the dominant phylum, and co-existing major bacterial phyla included Proteobacteria, Bacteroidetes, Actinoacteria, and Verrucomicrobia. On the genus level, the initial dominance by Dolichospermum in June yielded to Planktothrix in July, which were replaced by Microcystis and Cylindrospermopsis in August throughout the bloom. Based on the number of verified unique OTUs (a within-genus biodiversity metric), dominant genera tended to have high within-genus diversity. For example, Dolichospermum had 57 unique OTUs, Planktothrix had 36, Microcystis had 12, and Cylindrospermopsis had 4 unique OTUs. Interestingly, these different OTUs showed different dynamics and association with other OTUs. First, no between-OTU competitions were observed during the bloom cycle, and dominant OTUs were abundant throughout the bloom. Such biodiversity of OTUs and their dynamics were verified in Microcystis aeruginosa with two microcystin synthetase genes (mcyA and mcyG): the relative abundance of both genes varied during the bloom based on quantitative PCR. Two Dolichospermum circinale OTUs and one P. rubescens OTU were most abundant and persistently present throughout the entire bloom. Second, these OTUs differed in the OTUs they were associated with. Third, these OTUs tended to have different levels of association with the environmental factors, even they belonged to the same genera. These findings suggest the structure and dynamics of a cyanobacterial bloom community is complex, with only few OTUs dominating the bloom. Thus, high-resolution molecular characterization will be necessary to understand bloom development.  相似文献   

13.
Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70 % of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.  相似文献   

14.
Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.  相似文献   

15.
Nitrogen cycle is a critical biogeochemical process of the oceans. The nitrogen fixation by sponge cyanobacteria was early observed. Until recently, sponges were found to be able to release nitrogen gas. However the gene-level evidence for the role of bacterial symbionts from different species sponges in nitrogen gas release is limited. And meanwhile, the quanitative analysis of nitrogen cycle-related genes of sponge microbial symbionts is relatively lacking. The nirK gene encoding nitrite reductase which catalyzes soluble nitrite into gas NO and nosZ gene encoding nitrous oxide reductase which catalyzes N2O into N2 are two key functional genes in the complete denitrification pathway. In this study, using nirK and nosZ genes as markers, the potential of bacterial symbionts in six species of sponges in the release of N2 was investigated by phylogenetic analysis and real-time qPCR. As a result, totally, 2 OTUs of nirK and 5 OTUs of nosZ genes were detected by gene library-based saturated sequencing. Difference phylogenetic diversity of nirK and nosZ genes were observed at OTU level in sponges. Meanwhile, real-time qPCR analysis showed that Xestospongia testudinaria had the highest abundance of nosZ gene, while Cinachyrella sp. had the greatest abundance of nirK gene. Phylogenetic analysis showed that the nirK and nosZ genes were probably of Alpha-, Beta-, and Gammaproteobacteria origin. The results from this study suggest that the denitrification potential of bacteria varies among sponges because of the different phylogenetic diversity and relative abundance of nosZ and nirK genes in sponges. Totally, both the qualitative and quantitative analyses of nirK and nosZ genes indicated the different potential of sponge bacterial symbionts in the release of nitrogen gas.  相似文献   

16.
The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28 were only recovered in one of the libraries. For AOB, only seven OTUs (based on 16S rRNA gene) and eight OTUs (based on amoA gene) were obtained, showing lower diversity than AOA. The qPCR results revealed that AOA amoA gene copy numbers ranged from 9.6 × 106 to 5.1 × 107 copies per gram of sediment and AOB amoA gene ranged from 9.5 × 104 to 6.2 × 105 copies per gram of sediment, indicating that the dominant ammonia-oxidizing microorganisms in the sediment of the Pearl River Estuary were AOA. The terminal restriction fragment length polymorphism results showed that the relative abundance of AOB species in the sediment samples of different salinity were significantly different, indicating that salinity might be a key factor shaping the AOB community composition.  相似文献   

17.
In order to explore the responses of the bacterioplankton community to different types of aquaculture environments, three mariculture ponds comprised of groupers (Epinephelus diacanthus, ED), prawns (Penaeus vannamei, PV), and abalone (Haliotis diversicolor supertexta, HDS) in southeast, coastal China were investigated. The free-living bacterial diversity was analyzed through the construction of 16S rDNA clone library. A total of 203 16S rDNA sequences from three clone libraries were classified into 118 operational taxonomic units (OTUs), of which 51, 31, and 42 OTUs were distributed in the ED, PV, and HDS pond, respectively, with Bacteroidetes (30.6%), Actinobacteria (55.2%), and Cyanobacteria (32.8%) as the dominant division in the respective ponds. Meanwhile, each pond occupied some unique OTUs that were affiliated with uncommon (sub-)phyla, such as candidate OP11 division, Acidobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia. Bacterial diversity in the ED pond was the richest, followed by the HDS and the PV pond. OTUs of 61.9% and 94.9% have less than 90% and 97% similarity to their nearest neighbors in public databases, respectively. All OTUs were grouped into 67 clusters, covering 11 (sub-)phyla. The OTUs only from single pond distributed in 53 clusters (79.1%), the OTUs shared by two ponds were affiliated with 14 clusters (20.9%), and none of clusters was formed by the OTUs which commonly originated from the three pond libraries, suggesting that the composition of bacterial populations in these ponds were significantly different. These results indicate that the aquatic environment created by different mariculture animals may foster very special and complex bacterial communities. Handling editor: David Philip Hamilton  相似文献   

18.
Knowledge of fungal root-associates is essential for effective conservation of tropical epiphytic orchids. We investigated the diversity of root-associated fungi of Cyrtochilum myanthum, Scaphyglottis punctulata and Stelis superbiens from a tropical mountain rainforest in southern Ecuador, using a culture dependent approach. We identified 115 fungal isolates, corresponding to 49 fungal OTUs, based on sequences of the nrDNA ITS and partial 28S region. Members of Ascomycota were unambiguously dominant (37 OTUs), including Trichoderma sp. as the most frequent taxon. Members of Basidiomycota (Agaricales and Polyporales) and Mucoromycota (Umbelopsidales and Mortierellales) were also identified. Four potential mycorrhizal OTUs of Tulasnellaceae and Ceratobasidiaceae were isolated from C. myanthum and S. superbiens. Fungal community composition was examined using Sørensen and Jaccard indices of similarity. Alfa diversity was significantly different between C. myanthum and S. superbiens. No difference in beta diversity of the fungal communities between the 3 orchid species and the collecting sites was detected. The study revealed a high diversity of fungi associated with orchid roots. Our results contribute to a better understanding of specific relationships between epiphytic orchids and their root-associated fungi.  相似文献   

19.
The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

20.
Investigations of the distribution and diversity of nitrogen-fixing microorganisms in natural environments have often relied on PCR amplification and sequence analysis of a portion of one of the key enzymes in nitrogen fixation, dinitrogenase reductase, encoded by nifH. Recent work has suggested that DNA macroarrays provide semiquantitative fingerprints of diversity within mixtures of nifH amplicons (G. F. Steward, B. D. Jenkins, B. B. Ward, and J. P. Zehr, Appl. Environ. Microbiol. 70:1455-1465, 2004). Here we report the application of macroarrays for a study in the Chesapeake Bay. Samples from different locations in the bay yielded distinct fingerprints. Analysis of replicates and samples from different locations by cluster analysis showed that replicates clustered together, whereas different samples formed distinct clusters. There was a correspondence between the hybridization pattern observed and that predicted from the distribution of sequence types in a corresponding clone library. Some discrepancies between the methods were observed which are likely a result of the high nifH sequence diversity in the Chesapeake Bay and the limited number of sequences represented on this version of the array. Analyses of sequences in the clone library indicate that the Chesapeake Bay harbors unique, phylogenetically diverse diazotrophs. The macroarray hybridization patterns suggest that there are spatially variable communities of diazotrophs, which have been confirmed by quantitative PCR methods (S. M. Short, B. D. Jenkins, and J. P. Zehr, Appl. Environ. Microbiol., in press). The results show that DNA macroarrays have great potential for mapping the spatial and temporal variability of functional gene diversity in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号