首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. Notably, human cathelicidin LL-37 exhibits the protective effect on the septic animal models. Thus, in this study, to elucidate the mechanism for the protective action of LL-37 on sepsis, we utilized LPS (lipopolysaccharide) and ATP (adenosine triphosphate) as a PAMP and a DAMP, respectively, and examined the effect of LL-37 on the LPS/ATP-induced pyroptosis of macrophage-like J774 cells. The data indicated that the stimulation of J774 cells with LPS and ATP induces the features of pyroptosis, including the expression of IL-1β mRNA and protein, activation of caspase-1, inflammasome formation and cell death. Moreover, LL-37 inhibits the LPS/ATP-induced IL-1β expression, caspase-1 activation, inflammasome formation, as well as cell death. Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X7-mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X7 activation.  相似文献   

2.
LPS-binding protein (LBP) is a central mediator that transfers LPS to CD14 to initiate TLR4-mediated proinflammatory response. However, a possibility of another LPS transfer molecule has been suggested because LBP-deficient mice showed almost normal inflammatory response after LPS injection. In this study, we describe the novel finding that high mobility group box 1 protein (HMGB1) recently identified as a mediator of sepsis has a function of LPS transfer for a proinflammatory response. We used ELISA and surface plasmon resonance to show that HMGB1 binds LPS in a concentration-dependent manner and that the binding is stronger to lipid A moiety than to the polysaccharide moiety of LPS. This binding was inhibited by LBP and polymyxin B. Using native PAGE and fluorescence-based LPS transfer analyses, we show that HMGB1 can catalytically disaggregate and transfer LPS to both soluble CD14 protein and to human PBMCs in a dose-dependent manner. However, this effect was dramatically reduced to the baseline level when HMGB1 was heat inactivated. Furthermore, a mixture of HMGB1 and LPS treatment results in a higher increase in TNF-alpha production in human PBMCs and peripheral blood monocytes than LPS or HMGB1 treatment alone or their summation. Thus, we propose that HMGB1 plays an important role in Gram-negative sepsis by catalyzing movement of LPS monomers from LPS aggregates to CD14 to initiate a TLR4-mediated proinflammatory response.  相似文献   

3.
Sepsis is a life-threatening syndrome with disturbed host responses to severe infections, accounting for the majority of death in hospitalized patients. However, effective medicines are currently scant in clinics due to the poor understanding of the exact underlying mechanism. We previously found that blocking caspase-11 pathway (human orthologs caspase-4/5) is effective to rescue coagulation-induced organ dysfunction and lethality in sepsis models. Herein, we screened our existing chemical pools established in our lab using bacterial outer membrane vesicle (OMV)-challenged macrophages, and found 7-(diethylamino)-1-hydroxy-phenothiazin-3-ylidene-diethylazanium chloride (PHZ-OH), a novel phenothiazinium-based derivative, was capable of robustly dampening caspase-11-dependent pyroptosis. The in-vitro study both in physics and physiology showed that PHZ-OH targeted AP2-associated protein kinase 1 (AAK1) and thus prevented AAK1-mediated LPS internalization for caspase-11 activation. By using a series of gene-modified mice, our in-vivo study further demonstrated that administration of PHZ-OH significantly protected mice against sepsis-associated coagulation, multiple organ dysfunction, and death. Besides, PHZ-OH showed additional protection on Nlrp3−/− and Casp1/ mice but not on Casp11−/−, Casp1/11−/−, Msr1−/−, and AAK1 inhibitor-treated mice. These results suggest the critical role of AAK1 on caspase-11 signaling and may provide a new avenue that targeting AAK1-mediated LPS internalization would be a promising therapeutic strategy for sepsis. In particular, PHZ-OH may serve as a favorable molecule and an attractive scaffold in future medicine development for efficient treatment of bacterial sepsis. Subject terms: Drug development, Bacterial infection  相似文献   

4.
Apoptotic cells trigger immune tolerance in engulfing phagocytes. This poorly understood process is believed to contribute to the severe immunosuppression and increased susceptibility to nosocomial infections observed in critically ill sepsis patients. Extracellular high mobility group box 1 (HMGB1) is an important mediator of both sepsis lethality and the induction of immune tolerance by apoptotic cells. We have found that HMGB1 is sensitive to processing by caspase-1, resulting in the production of a fragment within its N-terminal DNA-binding domain (the A-box) that signals through the receptor for advanced glycation end products (RAGE) to reverse apoptosis-induced tolerance. In a two-hit mouse model of sepsis, we show that tolerance to a secondary infection and its associated mortality were effectively reversed by active immunization with dendritic cells treated with HMGB1 or the A-box fragment, but not a noncleavable form of HMGB1. These findings represent a novel link between caspase-1 and HMGB1, with potential therapeutic implications in infectious and inflammatory diseases.  相似文献   

5.
BackgroundMaslinic acid (MA), a natural triterpenoid from Olea europaea, prevents oxidative stress and pro-inflammatory cytokine generation. High mobility group box 1 (HMGB1) has been recognized as a late mediator of sepsis, and the inhibition of the release of HMGB1 and the recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis.MethodsWe tested the hypothesis that MA induces sirtuin 1 and heme oxygenase-1, which inhibit the release of HMGB1 in lipopolysaccharide (LPS)-stimulated cells, thus inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. MA was administered after LPS or HMGB1 challenge, and the antiseptic activity of MA was determined based on permeability, the activation of pro-inflammatory proteins, and the production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model.ResultsMA significantly reduced the release of HMGB1 in LPS-activated HUVECs and attenuated the CLP-induced release of HMGB1. Additionally, MA alleviated HMGB1-mediated vascular disruption and inhibited hyperpermeability in mice, and in vivo analysis revealed that MA reduced sepsis-related mortality and tissue injury.ConclusionTaken together, the present results suggest that MA reduced HMGB1 release and septic mortality and thus may be useful in the treatment of sepsis.  相似文献   

6.
Li W  Ashok M  Li J  Yang H  Sama AE  Wang H 《PloS one》2007,2(11):e1153

Background

The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-γ) and late (e.g., HMGB1) pro-inflammatory cytokines. Our recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new experimental therapeutics. We previously reported that green tea brewed from the leaves of the plant Camellia sinensis is effective in inhibiting endotoxin-induced HMGB1 release.

Methods and Findings

Here we demonstrate that its major component, (-)-epigallocatechin-3-gallate (EGCG), but not catechin or ethyl gallate, dose-dependently abrogated HMGB1 release in macrophage/monocyte cultures, even when given 2–6 hours post LPS stimulation. Intraperitoneal administration of EGCG protected mice against lethal endotoxemia, and rescued mice from lethal sepsis even when the first dose was given 24 hours after cecal ligation and puncture. The therapeutic effects were partly attributable to: 1) attenuation of systemic accumulation of proinflammatory mediator (e.g., HMGB1) and surrogate marker (e.g., IL-6 and KC) of lethal sepsis; and 2) suppression of HMGB1-mediated inflammatory responses by preventing clustering of exogenous HMGB1 on macrophage cell surface.

Conclusions

Taken together, these data suggest a novel mechanism by which the major green tea component, EGCG, protects against lethal endotoxemia and sepsis.  相似文献   

7.
Caspase-11 is an inducible caspase involved in the regulation of cell death and inflammation. In the present study, we examined whether apoptosis signal-regulating kinase 1 (Ask1)-mediated signaling pathway is involved in the expression of caspase-11 induced by lipopolysaccharide (LPS). We found that the induction of caspase-11 was suppressed by the inhibitors of NADPH oxidase (Nox) or knockdown of Nox4 that acts downstream of toll-like receptor 4 and generates Ask1-activating reactive oxygen species. Overexpression of dominant negative tumor necrosis factor receptor associate factor 6 also suppressed the induction of caspase-11. Importantly, knockdown or dominant negative form of Ask1 suppressed the induction of caspase-11 following LPS stimulation. Taken together, our results show that Ask1 regulates the expression of caspase-11 following LPS stimulation.  相似文献   

8.
9.
10.
Phagocytosis of apoptotic cells, also called efferocytosis, is an essential feature of immune responses and critical to resolution of inflammation. Impaired efferocytosis is associated with an unfavorable outcome from inflammatory diseases, including acute lung injury and pulmonary manifestations of cystic fibrosis. High mobility group protein-1 (HMGB1), a nuclear nonhistone DNA-binding protein, has recently been found to be secreted by immune cells upon stimulation with LPS and cytokines. Plasma and tissue levels of HMGB1 are elevated for prolonged periods in chronic and acute inflammatory conditions, including sepsis, rheumatoid arthritis, acute lung injury, burns, and hemorrhage. In this study, we found that HMGB1 inhibits phagocytosis of apoptotic neutrophils by macrophages in vivo and in vitro. Phosphatidylserine (PS) is directly involved in the inhibition of phagocytosis by HMGB1, as blockade of HMGB1 by PS eliminates the effects of HMGB1 on efferocytosis. Confocal and fluorescence resonance energy transfer demonstrate that HMGB1 interacts with PS on the neutrophil surface. However, HMGB1 does not inhibit PS-independent phagocytosis of viable neutrophils. Bronchoalveolar lavage fluid from Scnn(+) mice, a murine model of cystic fibrosis lung disease which contains elevated concentrations of HMGB1, inhibits neutrophil efferocytosis. Anti-HMGB1 Abs reverse the inhibitory effect of Scnn(+) bronchoalveolar lavage on efferocytosis, showing that this effect is due to HMGB1. These findings demonstrate that HMGB1 can modulate phagocytosis of apoptotic neutrophils and suggest an alternative mechanism by which HMGB1 is involved in enhancing inflammatory responses.  相似文献   

11.
《Autophagy》2013,9(8):904-906
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, actively released following cytokine stimulation as well as passively during cell injury and death. Autophagy is a tightly regulated cellular stress pathway involving the lysosomal degradation of cytoplasmic organelles or proteins. Organisms respond to oxidative injury by orchestrating stress responses such as autophagy to prevent further damage. Recently, we reported that HMGB1 is an autophagy sensor in the presence of oxidative stress. Hydrogen peroxide (H2O2) and loss of superoxide dismutase 1 (SOD1)-mediated oxidative stress promotes cytosolic HMGB1 expression and extracellular release. Inhibition of HMGB1 release or loss of HMGB1 decreases the number of autolysosomes and autophagic flux in human and mouse cell lines under conditions of oxidative stress. These findings provide insight into how HMGB1, a damage associated molecular pattern (DAMP), triggers autophagy as defense mechanism under conditions of cellular stress.  相似文献   

12.
Kang R  Livesey KM  Zeh HJ  Lotze MT  Tang D 《Autophagy》2011,7(8):904-906
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, actively released following cytokine stimulation as well as passively during cell injury and death. Autophagy is a tightly regulated cellular stress pathway involving the lysosomal degradation of cytoplasmic organelles or proteins. Organisms respond to oxidative injury by orchestrating stress responses such as autophagy to prevent further damage. Recently, we reported that HMGB1 is an autophagy sensor in the presence of oxidative stress. Hydrogen peroxide (H 2O 2) and loss of superoxide dismutase 1 (SOD1)-mediated oxidative stress promotes cytosolic HMGB1 expression and extracellular release. Inhibition of HMGB1 release or loss of HMGB1 decreases the number of autolysosomes and autophagic flux in human and mouse cell lines under conditions of oxidative stress. These findings provide insight into how HMGB1, a damage associated molecular pattern (DAMP), triggers autophagy as defense mechanism under conditions of cellular stress.  相似文献   

13.
High circulating levels of lactate and high mobility group box-1 (HMGB1) are associated with the severity and mortality of sepsis. However, it is unclear whether lactate could promote HMGB1 release during sepsis. The present study demonstrated a novel role of lactate in HMGB1 lactylation and acetylation in macrophages during polymicrobial sepsis. We found that macrophages can uptake extracellular lactate via monocarboxylate transporters (MCTs) to promote HMGB1 lactylation via a p300/CBP-dependent mechanism. We also observed that lactate stimulates HMGB1 acetylation by Hippo/YAP-mediated suppression of deacetylase SIRT1 and β-arrestin2-mediated recruitment of acetylases p300/CBP to the nucleus via G protein-coupled receptor 81 (GPR81). The lactylated/acetylated HMGB1 is released from macrophages via exosome secretion which increases endothelium permeability. In vivo reduction of lactate production and/or inhibition of GPR81-mediated signaling decreases circulating exosomal HMGB1 levels and improves survival outcome in polymicrobial sepsis. Our results provide the basis for targeting lactate/lactate-associated signaling to combat sepsis.Subject terms: Infectious diseases, Signal transduction, Epigenetics  相似文献   

14.
High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that mediates inflammatory responses, whereas persicarin is an active compound from Oenanthe javanica that has been widely researched for its neuroprotective and antioxidant activities. However, little is known of the effects of persicarin on HMGB1‐mediated inflammatory response. Here, we investigated this issue by monitoring the effects of persicarin on the lipopolysaccharide (LPS) and on the cecal ligation and puncture (CLP)‐mediated releases of HMGB1 and the effects of persicarin on the HMGB1‐mediated modulation of inflammatory response. Persicarin potently inhibited the release of HMGB1 and down‐regulated HMGB1‐dependent inflammatory responses in human endothelial cells, and inhibited HMGB1‐mediated hyperpermeability and leukocyte migration in mice. Furthermore, persicarin reduced CLP‐induced HMGB1 release and sepsis‐related mortality. Given these results, persicarin should be viewed as a candidate therapeutic for the treatment of severe vascular inflammatory diseases, such as, sepsis or septic shock. J. Cell. Physiol. 228: 696–703, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL-1β and IL-18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase-1 mediated inflammasome pathway with the involvement of NLRP1-, NLRP3-, NLRC4-, AIM2-, pyrin-inflammasome (canonical inflammasome pathway) and caspase-4/5/11-mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase-1/4/5/11), and the cleaved N-terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase-1/caspase-11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.  相似文献   

16.
Inhibition of high mobility group box 1 (HMGB1) and restoration of endothelial integrity are emerging as attractive therapeutic strategies for the management of severe vascular inflammatory diseases. Recently, we found that JH-4, a synthesized decursin derivative, exhibited a strong anti-Hutchinson-Gilford progeria syndrome by efficiently blocking progerin-lamin A/C binding. In this study, we examined the effects of JH-4 on HMGB1-mediated septic responses and the survival rate in a mouse sepsis model. The anti-inflammatory activities of JH-4 were monitored based on its effects on lipopolysaccharide- or cecal ligation and puncture (CLP)-mediated release of HMGB1. The antiseptic activities of JH-4 were determined by measuring permeability, leukocyte adhesion, migration, and the activation of proinflammatory proteins in HMGB1-activated human umbilical vein endothelial cells and mice. JH-4 inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. JH-4 also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with JH-4 reduced CLP-induced release of HMGB1, sepsis-related mortality, and pulmonary injury in vivo. Our results indicate that JH-4 is a possible therapeutic agent to treat various severe vascular inflammatory diseases via the inhibition of the HMGB1 signaling pathway.  相似文献   

17.
The inflammasome is a signalling platform leading to caspase-1 activation. Caspase-1 causes pyroptosis, a necrotic-like cell death. AIM2 is an inflammasome sensor for cytosolic DNA. The adaptor molecule ASC mediates AIM2-dependent caspase-1 activation. To date, no function besides caspase-1 activation has been ascribed to the AIM2/ASC complex. Here, by comparing the effect of gene inactivation at different levels of the inflammasome pathway, we uncovered a novel cell death pathway activated in an AIM2/ASC-dependent manner. Francisella tularensis, the agent of tularaemia, triggers AIM2/ASC-dependent caspase-3-mediated apoptosis in caspase-1-deficient macrophages. We further show that AIM2 engagement leads to ASC-dependent, caspase-1-independent activation of caspase-8 and caspase-9 and that caspase-1-independent death is reverted upon caspase-8 inhibition. Caspase-8 interacts with ASC and active caspase-8 specifically colocalizes with the AIM2/ASC speck thus identifying the AIM2/ASC complex as a novel caspase-8 activation platform. Furthermore, we demonstrate that caspase-1-independent apoptosis requires the activation of caspase-9 and of the intrinsic pathway in a typical type II cell manner. Finally, we identify the AIM2/ASC-dependent caspase-1-independent pathway as an innate immune mechanism able to restrict bacterial replication in vitro and control IFN-γ levels in vivo in Casp1(KO) mice. This work underscores the crosstalk between inflammasome components and the apoptotic machinery and highlights the versatility of the pathway, which can switch from pyroptosis to apoptosis.  相似文献   

18.
Evasion of immune surveillance is a key step in malignant progression. Interactions between transformed hematopoietic cells and their environment may initiate events that confer resistance to apoptosis and facilitate immune evasion. In this report, we demonstrate that beta(1) integrin-mediated adhesion to fibronectin inhibits CD95-induced caspase-8 activation and apoptosis in hematologic tumor cell lines. This adhesion-dependent inhibition of CD95-mediated apoptosis correlated with enhanced c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long (c-FLIP(L)) cytosolic solubility compared with nonadhered cells. Cytosolic c-FLIP(L) protein preferentially associated with cytosolic Fas-associated death domain protein (FADD) and localized to the death-inducing signal complex after CD95 ligation in adherent cells. The incorporation of c-FLIP(L) in the death-inducing signal complex prevented procaspase-8 processing and activation of the effector phase of apoptosis. Adhesion to fibronectin increased c-FLIP(L) cytosolic solubility and availability for FADD binding by redistributing c-FLIP(L) from a preexisting membrane-associated fraction. Increased cytosolic availability of c-FLIP(L) for FADD binding was not related to increased levels of RNA or protein synthesis. These data show that adhesion of anchorage-independent cells to fibronectin provides a novel mechanism of resistance to CD95-mediated programmed cell death by regulating the cellular localization and availability of c-FLIP(L).  相似文献   

19.
Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1–TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1’s release from hypoxic hepatocytes in vitro and thereby weakened HMGB1’s activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury.  相似文献   

20.
Inflammasomes are sensors that serve as activation platforms for caspase-1 — a mechanism that set the prevailing paradigm for inflammatory caspase activation. A recent Nature paper by Shi et al. upends this paradigm by describing an unprecedented model for caspase activation whereby caspase-4, -5, and -11 directly bind their agonist, cytosolic LPS, triggering auto-activation and subsequent pyroptotic cell death.The inflammatory caspases — among them caspase-1, murine caspase-11, and human caspase-4 and -5 (homologs of murine caspase-11) — are central to depriving infectious agents of intracellular replication niches. Upon responding to a given stimulus, they become catalytically active and initiate a form of programmed inflammatory cell death termed pyroptosis. By examining their homology and adjacent chromosomal arrangement in humans and other mammals, it is apparent that the inflammatory caspases originate from a series of gene duplications and subsequent divergences.A balanced caspase-1 response is critical to defense against a variety of infectious agents, whereas its aberrant activation underlies a number of immune pathologies. Less is known about caspase-11, -4, and -5 in infection; however, we have shown that one physiological role of caspase-11 is to detect and help clear cytosol invasive infections, such as those caused by Burkholderia thailandensis1. More recent work has shown that caspase-11 mediates resistance to DSS-induced colitis2 and clearance of Salmonella enterica serovar Typhimurium-infected cells in the intestinal epithelium3, perhaps limited to the times when these bacteria enter the cytosol. Likewise, caspase-4 responds to S. Typhimurium, enteropathogenic E. coli3, and Shigella flexneri4 infections in human intestinal epithelial cells. As with caspase-1, moderation of caspase-11 activity is key to limiting immune pathology: much of the lethality of bolus lipopolysaccharide (LPS) injection is mediated by caspase-115,6,7,8. Shedding light on the mechanisms underlying these observations, our lab and that of Dr Vishva Dixit independently determined that caspase-11 is activated in response to cytosolic LPS7,8; however, whether caspase-4 (and/or -5) functions similarly was not determined.Of the inflammatory caspases, the activation mechanism of caspase-1 is the best described. Via its N-terminal CARD domain and an adaptor protein called ASC, caspase-1 interacts with a family of cytosolic proteins, the inflammasomes, that detect signatures of infection (Figure 1). It then initiates pyroptosis and directs proinflammatory cytokine secretion. Inflammasomes thus follow the paradigm of apoptotic caspase activation, where apoptosis initiators caspase-2, -8 and -9 are recruited and activated by death domain family-containing upstream sensors: the piddosome, DISC, and apoptosome, respectively. Therefore, we and others assumed that the model of upstream sensor activating downstream caspase would hold for the other inflammatory caspases as well. For example, Kayagaki and colleagues coined the term ''noncanonical inflammasome pathway'' to describe activation of caspase-11 by a putative LPS sensor5,6. However, a recent elegant paper by Shi et al.9 proves this hypothesis wrong and describes an entirely novel paradigm of caspase activation. Moreover, the authors address many of the gaps in our understanding of caspase-11, -4, and -5 biology.Open in a separate windowFigure 1Schematic of canonical and noncanonical inflammasome pathways for inflammatory caspase activation. Left: Inflammasomes such as AIM2, NLRP3, and NLRC4 detect contamination of the cytosol with microbial ligands (e.g., DNA, flagellin, bacterial type 3 secretion system components) or certain cellular perturbations. Via the adaptor protein ASC, they subsequently activate caspase-1 (in the case of certain CARD-containing inflammasomes, such as NLRC4, direct interaction with caspase-1 can also occur), which initiates pyroptosis and secretion of the proinflammatory cytokines IL-1β and IL-18. Right: Caspase-4, -5, and -11 directly bind cytosolic LPS from Gram-negative bacteria. They subsequently oligomerize, activate, and initiate pyroptosis.Using electroporation to deliver bacterial components into the cytosol of cells, the authors first determined that caspase-4 responds to LPS in human monocytes by triggering pyroptosis. These findings extended to non-myeloid cells, where caspase-4 is constitutively expressed. The authors then demonstrated that caspase-4 and caspase-11 are functionally interchangable, supporting that they are homologs.Shi and colleagues next began identifying the molecule that actually binds LPS in the cytosol. They screened a number of NLRs and CARD domain-containing proteins, but no candidates emerged. In agreement with this, unpublished work from our lab also ruled out virtually all known CARD-containing proteins as the LPS sensor. Clues to the identity of the sensor arose from the following astute observations: First, Shi et al. noticed that both caspase-4 and caspase-11, when purified from E. coli, eluted from columns as large oligomers, suggesting activation, whereas they eluted as monomers when expressed in and purified from insect cells. Second, they found that the LPS contents of caspase-4 and -11 purified from E. coli were three orders of magnitude higher than what they typically observed when purifying bacterial proteins. Together, these results suggested that caspase-4 and -11 directly bind LPS. A series of pull-downs and surface plasmon resonance experiments confirmed this notion, revealing stable interaction of LPS with caspase-4 and -11 in cells transfected with LPS. Furthermore, the authors showed that caspase-5 similarly binds LPS. In all cases, LPS binding and caspase oligomerization was CARD domain dependent; indeed, purified caspase-4 and -11 CARD domains were sufficient to bind LPS and oligomerize. Three regions of basic residues in the caspase-11 CARD domain — mostly conserved in caspase-4 and -5, but not caspase-1 — were critical for LPS binding. Last, the authors determined that caspase-11 and -4 oligomerization stimulates activation, as measured by cleavage of a fluorogenic substrate. Interestingly, the known antagonists of caspase-11 activation Lipid IVa and atypical LPS from Rhodobacter sphaeroides bound caspase-4 and -11, but failed to induce oligomerization and activation.The Shi et al. paper brings to light a number of fascinating perspectives. First, binding of LPS by caspase-4, -5, and -11 establishes a new paradigm for caspase activation: Direct detection of a cell death-inducing ligand by a caspase. As the authors noted, this is analogous to horseshoe crab factors C and G, which bind LPS and β-(1,3)-D-glucan, respectively, and initiate coagulation cascades in haemolymphs.Second, the cell expression patterns of caspase-11, -4, and -5 may have important implications in future strategies for treating endotoxemia and Gram-negative sepsis. Caspase-11 expression is inducible in myeloid cells, where its basal expression is low; in contrast, caspase-4 appears to be constitutively expressed in human myeloid cells. Therefore, aberrant translocation of LPS into the cytosol of human myeoloid cells may not require priming to activate caspase-4 and initiate pyroptosis, perhaps sensitizing humans to the deleterious effects of LPS compared to mice. Investigating other cell type expression differences in this context will be informative.In answering so many questions about the biology of the inflammatory caspases, the work of Shi and colleagues raises many more. Among them: Why do antagonists of caspase-11 fail to induce oligomerization? How do the CARD domains of these caspases “see” LPS? During binding of LPS by MD2, the acyl chains of lipid A extend into the binding cleft of MD210 in a manner sensitive to acyl chain length; in contrast, caspase-11 detects very diverse lipid A acyl chain lengths and structures, such as those of Salmonella and Legionella species7,8,11, suggesting that the CARD domain may wrap around the lipid groups of LPS near the phosphate head groups of lipid A. Insights into these questions will surely come from crystal structures of caspase-11, -4, and -5 bound to various LPS structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号