首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower‐grade glioma (LGG) are still lacking. This study aims to develop an expression‐based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests‐variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five‐microRNA signature that can classify patients into low‐risk or high‐risk group with significantly different survival in the training and test datasets (P < 0.001). The five‐microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer‐associated pathways. The newly discovered five‐microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.  相似文献   

2.
3.
刘洁  许凯龙  马立新  王洋 《生物工程学报》2022,38(10):3790-3808
脑胶质瘤(glioma)是中枢神经系统最常见的内在肿瘤,具有发病率高、预后较差等特点。本研究旨在鉴定多形性胶质母细胞瘤(glioblastoma multiforme,GBM)和低级别胶质瘤(lower-grade gliomas, LGG)之间的差异表达基因(differentially expressed genes, DEGs),以探讨不同级别胶质瘤的预后影响因素。从NCBI基因表达综合数据库中收集了胶质瘤的单细胞转录组测序数据,其中包括来自3个数据集的共29 097个细胞样本。对于不同分级的人脑胶质瘤进行分析,经过滤得到21 071个细胞,通过基因本体分析、京都基因与基因组百科全书途径分析,从差异表达基因中筛选出70个基因,我们通过查阅文献,聚焦到delta样典型Notch配体3 (delta like canonical Notch ligand 3,DLL3)这个基因。基于TCGA的基因表达谱交互分析(gene expression profiling interactive analysis, GEPIA)数据库用于探索LGG和GBM中DLL3基因的表达差异,采用基因表达...  相似文献   

4.
Liver hepatocellular carcinoma (LIHC) is one of the most frequently occurring primary malignant liver tumors and seriously harms people’s health in the world. Methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) has been shown to be associated with colon cancer cell proliferation, colony formation and invasion. In the present study, a total of 370 LIHC and 51 normal samples data were downloaded from The Cancer Genome Atlas (TCGA) database. Bioinformatics and immunohistochemistry (IHC) analysis showed that MTHFD1L is highly expressed in liver tumors. Correlation analysis suggested the differences of vital status between high- and low-expression MTHFD1L groups of LIHC. Univariate and multivariate Cox proportional hazards regression were performed to identify the relationship between clinical characteristics and overall survival (OS). In addition, to explore whether MTHFD1L has an effect on the immune infiltration of LIHC. The correlation between MTHFD1L expression and 24 immune cells were analyzed by ImmuneCellAI database. Furthermore, we combined three databases CIBERSORT, TIMER and ImmuneCellAI to do a comprehensive validation and determined that dendritic cells (DCs) resting, macrophage M0 and macrophage M2 closely related to the expression of MTHFD1L. The results showed that MTHFD1L was a potential prognostic biomarker for LIHC, and could help to elucidate that how the immune microenvironment promotes liver cancer development.  相似文献   

5.
Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.  相似文献   

6.
Low-grade glioma (LGG) poses significant management challenges and has a dismal prognosis. While immunotherapy has shown significant promise in cancer treatment, its progress in glioma has confronted with challenges. In our study, we aimed to develop an immune-related gene prognostic index (IRGPI) which could be used to evaluate the response and efficacy of LGG patients with immunotherapy. We included a total of 529 LGG samples from TCGA database and 1152 normal brain tissue samples from the GTEx database. Immune-related differentially expressed genes (DEGs) were screened. Then, we used weighted gene co-expression network analysis (WGCNA) to identify immune-related hub genes in LGG patients and performed Cox regression analysis to construct an IRGPI. The median IRGPI was used as the cut-off value to categorize LGG patients into IRGPI-high and low subgroups, and the molecular and immune mechanism in IRGPI-defined subgroups were analysed. Finally, we explored the relationship between IRGPI-defined subgroups and immunotherapy related indicators in patients after immunotherapy. Three genes (RHOA, NFKBIA and CCL3) were selected to construct the IRGPI. In a survival analysis using TCGA cohort as a training set, patients in the IRGPI-low subgroup had a better OS than those in IRGPI-high subgroup, consistent with the results in CGGA cohort. The comprehensive results showed that IRGPI-low subgroup had a more abundant activated immune cell population and lower TIDE score, higher MSI, higher TMB score, lower T cell dysfunction score, more likely benefit from ICIs therapy. IRGPI is a promising biomarker in the field of LGG ICIs therapy to distinguish the prognosis, the molecular and immunological characteristics of patients.  相似文献   

7.
8.
9.
10.
Triple-negative breast cancer (TNBC) is a special subtype of breast cancer (BC) with poor prognosis. Although some molecular mechanisms of TNBC have been elucidated, the efficacy of current treatments is limited. Therefore, it is urgently demanded to screen for novel biomarkers and drug targets for TNBC. In this study, we obtained four independent data sets (GSE76250, GSE31448, GSE43358, and METABRIC) from the Gene Expression Omnibus (GEO) database and the cBioPortal website. In the GSE76250 data set, 890 differentially expressed genes were identified and weighted gene co-expression network analysis was performed based on them. Then, two preserved modules associated with the KI67 score were detected. Gene ontology and pathway enrichment analyses showed genes in the modules participated in some cancer-related biological processes or pathways. Non-SMC condensin I complex subunit G (NCAPG) and ATP-binding cassette subfamily A member 9 (ABCA9) were identified as hub genes of the modules, and the significance of hub genes was validated in the GSE43358 data set. Finally, their prognostic value was assessed by survival analysis. These findings suggested that NCAPG and ABCA9 may be the key genes of TNBC. Moreover, ABCA9 was first reported in TNBC. They deserved further studies.  相似文献   

11.
12.
13.
Overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past 30 years, with survival averaging approximately 7 years. This study aimed to identify novel promising biomarkers of LGG and reveal its potential molecular mechanisms by integrated bioinformatics analysis. The microarray datasets of GSE68848 and GSE4290 were selected from GEO database for integrated analysis. In total, 293 overlapping differentially expressed genes (DEGs) were detected using the limma package. One hundred and eighty-eight nodes with 603 interactions were obtained from the establishment of protein-protein interaction (PPI) network. Functional and signaling pathway enriched were significantly correlated with the synapse and calcium signaling pathway, respectively. Module analysis revealed eight hub genes with high connectivity, which included CHRM1, DLG2, GABRD, GRIN1, HTR2A, KCNJ3, KCNJ9, and NUSAP1, and they were markedly correlated with patients’ prognosis. The mining of the Gene Expression Profiling Interactive Analysis database and qPCR further confirmed the abnormal expression of these key genes with their prognostic value in LGG. We eventually predicted the 20 most vital small molecule drugs, which potentially reverse the carcinogenic state of LGG, as per the CMap (connectivity map) database and these DEGs, and MS-275 (enrichment score = −0.939) was considered as the most promising small molecule to treat LGG. In conclusion, our study provided eight reliable novel molecular biomarkers for diagnosis, prognosis prediction, and treatment targets for LGG. These conclusions will contribute to a better comprehension of molecular mechanisms fundamental to LGG occurrence and progression, and providing new insights for future development of genomic individualized treatment in LGG.  相似文献   

14.
Large-scale sequencing of cancer genomes has revealed many novel mutations and inter-tumoral heterogeneity. Therefore, prioritizing variants according to their potential deleterious effects has become essential. We constructed a disease gene network and proposed a Bayesian ensemble approach that integrates diverse sources to predict the functional effects of missense variants. We analyzed 23,336 missense disease mutations and 36,232 neutral polymorphisms of 12,039 human proteins. The results showed successful improvement of prediction accuracy in both sensitivity and specificity, and we demonstrated the utility of the method by applying it to somatic mutations obtained from colorectal and breast cancer cell lines. The candidate genes with predicted deleterious mutations as well as known cancer genes were significantly enriched in many KEGG pathways related to carcinogenesis, supporting genetic homogeneity of cancer at the pathway level. The breast cancer-specific network increased the prediction accuracy for breast cancer mutations. This study provides a ranked list of deleterious mutations and candidate cancer genes and suggests that mutations affecting cancer may occur in important pathways and should be interpreted on the phenotype-related network or pathway. A disease gene network may be of value in predicting functional effects of novel disease-specific mutations.  相似文献   

15.
The identification of heterozygous mutations (with an incidence up to 85%) in either the R132 residue of isocitrate dehydrogenase-1 (IDH1) or the R172 residue of IDH2 in human low-grade diffuse gliomas was remarkable because no oncogenic pathway had been previously documented correlated with these enzymes. In spite of a recent surge in elucidating the tumorigenic activity of IDH mutations in glioblastoma, the underlying biological mechanisms remain poorly understood. We showed here that C6 glioma cells transiently over-expressing IDH2(R172G) induced nuclear accumulation of β-catenin, up-regulation of HIF-1α signaling and corresponding proteins expression that were closely related with tumor invasion and chemo-resistance. These results demonstrated a functional model in which IDH mutations were closely interrelated with glioma progression and could hold some therapeutic implications for future human glioma treatment.  相似文献   

16.
Identifying cancer driver genes and pathways among all somatic mutations detected in a cohort of tumors is a key challenge in cancer genomics. Traditionally, this is done by prioritizing genes according to the recurrence of alterations that they bear. However, this approach has some known limitations, such as the difficulty to correctly estimate the background mutation rate, and the fact that it cannot identify lowly recurrently mutated driver genes. Here we present a novel approach, Oncodrive-fm, to detect candidate cancer drivers which does not rely on recurrence. First, we hypothesized that any bias toward the accumulation of variants with high functional impact observed in a gene or group of genes may be an indication of positive selection and can thus be used to detect candidate driver genes or gene modules. Next, we developed a method to measure this bias (FM bias) and applied it to three datasets of tumor somatic variants. As a proof of concept of our hypothesis we show that most of the highly recurrent and well-known cancer genes exhibit a clear FM bias. Moreover, this novel approach avoids some known limitations of recurrence-based approaches, and can successfully identify lowly recurrent candidate cancer drivers.  相似文献   

17.
18.
Wang J  Zhang Y  Shen X  Zhu J  Zhang L  Zou J  Guo Z 《Molecular bioSystems》2011,7(4):1158-1166
Finding candidate cancer genes playing causal roles in carcinogenesis is an important task in cancer research. The non-randomness of the co-mutation of genes in cancer samples can provide statistical evidence for these genes' involvement in carcinogenesis. It can also provide important information on the functional cooperation of gene mutations in cancer. However, due to the relatively small sample sizes used in current high-throughput somatic mutation screening studies and the extraordinary large-scale hypothesis tests, the statistical power of finding co-mutated gene pairs based on high-throughput somatic mutation data of cancer genomes is very low. Thus, we proposed a stratified FDR (False Discovery Rate) control approach, for identifying significantly co-mutated gene pairs according to the mutation frequency of genes. We then compared the identified co-mutated gene pairs separately by pre-selecting genes with higher mutation frequencies and by the stratified FDR control approach. Finally, we searched for pairs of pathways annotated with significantly more between-pathway co-mutated gene pairs to evaluate the functional roles of the identified co-mutated gene pairs. Based on two datasets of somatic mutations in cancer genomes, we demonstrated that, at a given FDR level, the power of finding co-mutated gene pairs could be increased by pre-selecting genes with higher mutation frequencies. However, many true co-mutation between genes with lower mutation rates will still be missed. By the stratified FDR control approach, many more co-mutated gene pairs could be found. Finally, the identified pathway pairs significantly overrepresented with between-pathway co-mutated gene pairs suggested that their co-dysregulations may play causal roles in carcinogenesis. The stratified FDR control strategy is efficient in identifying co-mutated gene pairs and the genes in the identified co-mutated gene pairs can be considered as candidate cancer genes because their non-random co-mutations in cancer genomes are highly unlikely to be attributable to chance.  相似文献   

19.
Li W  Wang R  Yan Z  Bai L  Sun Z 《PloS one》2012,7(3):e33653
A considerable portion of patients with colorectal cancer have a high risk of disease recurrence after surgery. These patients can be identified by analyzing the expression profiles of signature genes in tumors. But there is no consensus on which genes should be used and the performance of specific set of signature genes varies greatly with different datasets, impeding their implementation in the routine clinical application. Instead of using individual genes, here we identified functional multi-gene modules with significant expression changes between recurrent and recurrence-free tumors, used them as the signatures for predicting colorectal cancer recurrence in multiple datasets that were collected independently and profiled on different microarray platforms. The multi-gene modules we identified have a significant enrichment of known genes and biological processes relevant to cancer development, including genes from the chemokine pathway. Most strikingly, they recruited a significant enrichment of somatic mutations found in colorectal cancer. These results confirmed the functional relevance of these modules for colorectal cancer development. Further, these functional modules from different datasets overlapped significantly. Finally, we demonstrated that, leveraging above information of these modules, our module based classifier avoided arbitrary fitting the classifier function and screening the signatures using the training data, and achieved more consistency in prognosis prediction across three independent datasets, which holds even using very small training sets of tumors.  相似文献   

20.
Purpose: Liver hepatocellular carcinoma (LIHC) is one of the most common primary malignant liver tumors worldwide. The RAD52 motif-containing protein 1 (RDM1) has been shown to play a role in mediating DNA damage repair and homologous recombination. The present study was designed to determine the expression of RDM1 and its prognostic value as well as its relationship with immune infiltration in LIHC patients.Methods: Oncomine and Tumor Immunoassay Resource were used to assess the expression of RDM1. PrognoScan and Kaplan–Meier bioinformatics database were used to analyze the impact of clinical influencing factors on prognosis. Finally, the Tumor Immune Assessment Resource (TIMER) and Gene Expression Analysis Interactive Analysis (GEPIA) databases were used to detect the correlation between the expression of RDM1 and expression of marker genes related to immune infiltration. Immunohistochemistry (IHC) method was used to detect the expression level of RDM1 in 90 cases of hepatocellular carcinoma and adjacent normal liver tissues.Results: RDM1 expression was up-regulated in most cancers. The expression of RDM1 was remarkably higher than that of the corresponding normal control genes in LIHC tissues. The increase in RDM1 messenger RNA (mRNA) expression was closely related to the decreases in overall survival (OS) and progression-free survival (PFS). Additionally, the increase in RDM1 mRNA expression was closely related to the infiltration levels of macrophages, CD8+ T cells and B cells and was positively correlated with a variety of immune markers in LIHC.Conclusion: The findings of the present study demonstrate that RDM1 is a potentially valuable prognostic biomarker that can help determine the progression of cancer and is associated with immune cell infiltration in LIHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号