首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A method to select mutator mutants was developed and 3 mutants were isolated from cultured mouse FM3A cells. Fluctuation analyses revealed that these mutator mutants have increased rates of spontaneous mutation at 3 genetic loci tested (resistance to ouabain, blasticidin S and tunicamycin). None of the 3 mutator mutants showed altered sensitivity to aphidicolin or arabinofuranosylcytosine, and so they differed from the mammalian mutator mutants reported previously. Also, all the mutator mutants had the same sensitivity as wild-type to UV or other DNA-damaging agents. Thus, these mutator mutants do not seem to have any deficiency in the DNA-repair process.

To determine whether the mutator activity was due to the intracellular dNTP pool imbalance, 4 dNTPs in these mutator mutants were determined by high-pressure liquid chromatography and compared to that of the wild-type cells. The results show that there is no large dNTP pool imbalance in these mutator mutants. Since the mutator activity is not associated with the dNTP pool imbalance, these mutants may have altered protein(s) directly involved in DNA replication.  相似文献   


2.
Eukaryotic cells contain a delicate balance of minute amounts of the four deoxyribonucleoside triphosphates (dNTPs), sufficient only for a few minutes of DNA replication. Both a deficiency and a surplus of a single dNTP may result in increased mutation rates, faulty DNA repair or mitochondrial DNA depletion. dNTPs are usually quantified by an enzymatic assay in which incorporation of radioactive dATP (or radioactive dTTP in the assay for dATP) into specific synthetic oligonucleotides by a DNA polymerase is proportional to the concentration of the unknown dNTP. We find that the commonly used Klenow DNA polymerase may substitute the corresponding ribonucleotide for the unknown dNTP leading in some instances to a large overestimation of dNTPs. We now describe assay conditions for each dNTP that avoid ribonucleotide incorporation. For the dTTP and dATP assays it suffices to minimize the concentrations of the Klenow enzyme and of labeled dATP (or dTTP); for dCTP and dGTP we had to replace the Klenow enzyme with either the Taq DNA polymerase or Thermo Sequenase. We suggest that in some earlier reports ribonucleotide incorporation may have caused too high values for dGTP and dCTP.  相似文献   

3.
Both the nuclear and mitochondrial DNA (mtDNA) depend on separate balanced pools of dNTPs for correct function of DNA replication and repair of DNA damage. Import of dNTPs from the cytosolic compartment to the mitochondria has been suggested to have the potential of rectifying a mitochondrial dNTP imbalance. Reduced TK2 activity has been demonstrated to result in mitochondrial dNTP imbalance and consequently mutations of mtDNA in non-dividing cells. In this study, the consequences of a reduced thymidine kinase 2 (TK2) activity were measured in proliferating HeLa cells, on both whole-cell as well as mitochondrial dNTP levels. With the exception of increased mitochondrial dCTP level no significant difference was found in cells with reduced TK2 activity. Our results suggest that import of cytosolic dNTPs in mitochondria of proliferating cells can compensate a TK2 induced imbalance of the mitochondrial dNTP pool.  相似文献   

4.
Both the nuclear and mitochondrial DNA (mtDNA) depend on separate balanced pools of dNTPs for correct function of DNA replication and repair of DNA damage. Import of dNTPs from the cytosolic compartment to the mitochondria has been suggested to have the potential of rectifying a mitochondrial dNTP imbalance. Reduced TK2 activity has been demonstrated to result in mitochondrial dNTP imbalance and consequently mutations of mtDNA in non-dividing cells. In this study, the consequences of a reduced thymidine kinase 2 (TK2) activity were measured in proliferating HeLa cells, on both whole-cell as well as mitochondrial dNTP levels. With the exception of increased mitochondrial dCTP level no significant difference was found in cells with reduced TK2 activity. Our results suggest that import of cytosolic dNTPs in mitochondria of proliferating cells can compensate a TK2 induced imbalance of the mitochondrial dNTP pool.  相似文献   

5.
The accuracy of DNA synthesis depends on the accuracy of the polymerase as well as the quality and concentration(s) of the available 5′-deoxynucleoside-triphosphate DNA precursors (dNTPs). The relationships between dNTPs and error rates have been studied in vitro, but only limited insights exist into these correlations during in vivo replication. We have investigated this issue in the bacterium Escherichia coli by analyzing the mutational properties of dcd and ndk strains. These strains, defective in dCTP deaminase and nucleoside diphosphate kinase, respectively, are characterized by both disturbances of dNTP pools and a mutator phenotype. ndk strains have been studied before, but were included in this study, as controversies exist regarding the source of its mutator phenotype. We show that dcd strains suffer from increased intracellular levels of dCTP (4-fold) and reduced levels of dGTP (2-fold), while displaying, as measured using a set of lacZ reversion markers in a mismatch-repair defective (mutL) background, a strong mutator effect for G·C→T·A and A·T→T·A transversions (27- and 42-fold enhancement, respectively). In contrast, ndk strains possess a lowered dATP level (4-fold) and modestly enhanced dCTP level (2-fold), while its mutator effect is specific for just the A·T→T·A transversions. The two strains also display differential mutability for rifampicin-resistant mutants. Overall, our analysis reveals for both strains a satisfactory correlation between dNTP pool alterations and the replication error rates, and also suggests that a minimal explanation for the ndk mutator does not require assumptions beyond the predicted effect of the dNTP pools.  相似文献   

6.
Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of the RNR by feedback processes, but a detailed understanding of these mechanisms is still lacking. Using a genetic approach in the bacterium Escherichia coli, a paradigm for the class Ia RNRs, we isolated 23 novel RNR mutants displaying elevated mutation rates along with altered dNTP levels. The responsible amino-acid substitutions in RNR reside in three different regions: (i) the (d)ATP-binding activity domain, (ii) a novel region in the small subunit adjacent to the activity domain, and (iii) the dNTP-binding specificity site, several of which are associated with different dNTP pool alterations and different mutational outcomes. These mutants provide new insight into the precise mechanisms by which RNR is regulated and how dNTP pool disturbances resulting from defects in RNR can lead to increased mutation.  相似文献   

7.
8.
The thy- mutator phenotype of Chinese hamster ovary cells is distinguished by increased intracellular levels of dCTP, auxotrophy for thymidine, and elevated spontaneous mutational rates. To determine the biochemical lesion responsible for this complex phenotype, enzymes responsible for the synthesis of dCTP and dTTP were investigated. Levels of ribonucleotide reductase and dCMP deaminase were identical in mutant and wild type strains. In contrast, CTP synthetase activity in extracts from thy- strains was consistently altered in that 50% of enzyme activity was resistant to feedback inhibition by CTP. Additionally, thy- strains obtained by DNA transfection also had CTP-resistant CTP synthetase. Thy+ revertants lost the resistant enzyme, and total activity was reduced. CTP-resistant CTP synthetase was regained in thy- mutants reselected from thy+ revertants, but in these strains all activity was resistant. These experiments demonstrate that the thy- mutator phenotype is a consequence of a mutation of CTP synthetase and suggest that one pathway of reversion to the wild type state is by loss or inactivation of the mutant allele rendering the revertants hemizygous for the gene.  相似文献   

9.
The HD domain motif is found in a superfamily of proteins in bacteria, archaea and eukaryotes. A few of these proteins are known to have metal-dependant phosphohydrolase activity, but the others are functionally unknown. Here we have characterized an HD domain-containing protein, TT1383, from Thermus thermophilus HB8. This protein has sequence similarity to Escherichia coli dGTP triphosphohydrolase, however, no dGTP hydrolytic activity was detected. The hydrolytic activity of the protein was determined in the presence of more than two kinds of deoxyribonucleoside triphosphates (dNTPs), which were hydrolyzed to their respective deoxyribonucleosides and triphosphates, and was found to be strictly specific for dNTPs in the following order of relative activity: dCTP > dGTP > dTTP > dATP. Interestingly, this dNTP triphosphohydrolase (dNTPase) activity requires the presence of dATP or dTTP in the dNTP mixture. dADP, dTDP, dAMP, and dTMP, which themselves were not hydrolyzed, were nonetheless able to stimulate the hydrolysis of dCTP. These results suggest the existence of binding sites specific for dATP and dTTP as positive modulators, distinct from the dNTPase catalytic site. This is, to our knowledge, the first report of a non-specific dNTPase that is activated by dNTP itself.  相似文献   

10.
A balanced supply of deoxyribonucleoside triphosphates (dNTPs) is one of the key prerequisites for faithful genome duplication. Both the overall concentration and the balance among the individual dNTPs (dATP, dTTP, dGTP, and dCTP) are tightly regulated, primarily by the enzyme ribonucleotide reductase (RNR). We asked whether dNTP pool imbalances interfere with cell cycle progression and are detected by the S-phase checkpoint, a genome surveillance mechanism activated in response to DNA damage or replication blocks. By introducing single amino acid substitutions in loop 2 of the allosteric specificity site of Saccharomyces cerevisiae RNR, we obtained a collection of strains with various dNTP pool imbalances. Even mild dNTP pool imbalances were mutagenic, but the mutagenic potential of different dNTP pool imbalances did not directly correlate with their severity. The S-phase checkpoint was activated by the depletion of one or several dNTPs. In contrast, when none of the dNTPs was limiting for DNA replication, even extreme and mutagenic dNTP pool imbalances did not activate the S-phase checkpoint and did not interfere with the cell cycle progression.  相似文献   

11.
Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates.  相似文献   

12.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

13.
Isolated HeLa cell nuclei were treated with NaCl at various concentrations and inhibition by aphidicolin of DNA synthesis in the treated nuclei was studied. The inhibition was either noncompetitive or of the mixed type with respect to each dNTP when the nuclei were treated with NaCl at concentrations lower than 0.08 M. However, aphidicolin was a competitive inhibitor with respect to dCTP and a non-competitive or mixed type inhibitor with respect to the other 3 dNTPs when they were treated with NaCl at concentrations higher than 0.1 M. These results suggest the presence of nuclear factor(s) responsible for the changes in the inhibitory mode of aphidicolin on endogenous nuclear DNA synthesis.  相似文献   

14.
The absolute and relative concentrations of the four dNTPs are key determinants of DNA replication fidelity, yet the consequences of altered dNTP pools on replication fidelity have not previously been investigated on a genome-wide scale. Here, we use deep sequencing to determine the types, rates and locations of uncorrected replication errors that accumulate in the nuclear genome of a mismatch repair-deficient diploid yeast strain with elevated dCTP and dTTP concentrations. These imbalanced dNTP pools promote replication errors in specific DNA sequence motifs suggesting increased misinsertion and increased mismatch extension at the expense of proofreading. Interestingly, substitution rates are similar for leading and lagging strand replication, but are higher in regions replicated late in S phase. Remarkably, the rate of single base deletions is preferentially increased in coding sequences and in short rather than long mononucleotides runs. Based on DNA sequence motifs, we propose two distinct mechanisms for generating single base deletions in vivo. Collectively, the results indicate that elevated dCTP and dTTP pools increase mismatch formation and decrease error correction across the nuclear genome, and most strongly increases mutation rates in coding and late replicating sequences.  相似文献   

15.
K Suzuki  M Miyaki  T Ono  H Mori  H Moriya  T Kato 《Mutation research》1983,122(3-4):293-298
The effect of UV irradiation on the intracellular DNA precursor pool in E. coli was investigated. UV irradiation of E. coli, followed by post-incubation for 1-1.5 h, altered the relative sizes of the deoxyribonucleoside triphosphate (dNTP) pool. The total amount of dNTPs increased: both dATP and dTTP increased several-fold, dCTP about twofold, while dGTP remained almost unchanged. In recA- and umuC- strains, which are defective in UV-induced mutagenesis, the pattern of nucleotide pool alterations was similar to that of wild-type strains.  相似文献   

16.
The arabinose-binding protein (ABP) of Escherichia coli binds L-arabinose in the periplasm and delivers it to a cytoplasmic membrane complex consisting of the AraG and AraH proteins, for uptake into the cell. To study the interaction between the soluble and membrane components of this periplasmic transport system, regions of the ABP surface containing the opening of the arabinose-binding cleft were subjected to site-directed mutagenesis. Thirty-eight ABP variants containing one to three amino acid substitutions were recovered. ABP variants were expressed with wild-type AraG and AraH from a plasmid, in a strain lacking the chromosomal araFGH operon, and the whole cell uptake parameters, Ven (maximum initial velocity of arabinose entry) and K(en) (concentration of arabinose yielding half-maximal entry) were determined. Twenty-four mutants had normal Ven values, 3 mutants had Ven and K(en) values twice wild type, and 11 mutants had Ven and K(en) values 20-50% of wild type. Binding proteins that had altered uptake properties were each expressed, processed, and localized to the periplasm at levels equivalent to wild type. The mutant binding proteins behaved the same as wild type during purification, and each had a Kd (dissociation constant for bound arabinose) comparable to that of wild-type ABP. Mutations that resulted in altered uptake identified nine amino acids surrounding the arabinose-binding cleft, all of which are charged in the wild-type protein, and all of whose side chains project outward from the cleft. The evidence suggests that this surface of the binding protein and these nine charged loci play a major role in ABP interactions with the membrane complex.  相似文献   

17.
Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine–aspartate domain–containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.  相似文献   

18.
Two mouse fibroblast lines (3T6-HU-11 and 3T6-CAdA) selected earlier for changes in either of the two subunits (M1 or M2) of ribonucleotide reductase showed an increased resistance to aphidicolin, a known inhibitor of DNA polymerase α. In both lines resistance is in all probability caused by overproduction of dNTPs. HU-11 overproduces an active M2 subunit, has an expanded dATP pool and shows a 2-fold increase in resistance to aphidicolin. CAdA is mutated in the regulatory M1 subunit, overproduces both dATP and dCTP and shows a sevenfold increased resistance. Addition of aphidicolin resulted in a rapid contraction of the dCTP pool, but not of other dNTP pools. We speculate that these effects might be linked to a regulatory function of dCTP, or a compound derived from it.  相似文献   

19.
The relationship between dNTP levels and DNA synthesis was investigated using alpha factor-synchronized yeast treated with the ribonucleotide reductase inhibitor hydroxyurea (HU). Although HU blocked DNA synthesis and prevented the dNTP pool expansion that normally occurs at G1/S, it did not exhaust the levels of any of the four dNTPs, which dropped to about 80% of G1 levels. When dbf4 yeast that are ts for replication initiation were allowed to preaccumulate dNTPs at 37 degrees C before being released to 25 degrees C in the presence of HU, they synthesized 0.3 genome equivalents of DNA and then arrested as dNTPs approached sub-G1 levels. Accumulation of dNTPs at G1/S was not a prerequisite for replication initiation, since dbf4 cells incubated in HU at 25 degrees C were able to replicate when subsequently switched to 37 degrees C in the absence of HU. The replication arrest mechanism was not dependent on the Mec1/Rad53 pathway, since checkpoint-deficient rad53 cells also failed to exhaust basal dNTPs when incubated in HU. The persistence of basal dNTP levels in HU-arrested cells and partial bypass of the arrest in cells that had preaccumulated dNTPs suggest that cells have a mechanism for arresting DNA chain elongation when dNTP levels are not maintained above a critical threshold.  相似文献   

20.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号