首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

2.
The role of the Golgi apparatus and the Golgi-endoplasmic reticulum-lysosome complex (GERL) in the genesis of lysosomes was examined in differentiating and degenerating motor neurons of anuran larvae. Acid phosphatase, aryl sulfatase, and thiolacetic acid esterase were utilized as marker enzymes for the lysosomal system, while nucleoside diphosphatase and thiamine pyrophosphatase labeled the inner saccule(s) of the Golgi apparatus. Reduced osmium tetroxide was routinely deposited in the outer Golgi saccule regardless of the state of neuronal maturation. In all young neurons, the disposition of acid hydrolase reaction product paralleled the formation of GERL, with no lytic activity in the Golgi apparatus per se. Hypertrophy of the Golgi apparatus and GERL was observed in the early phases of degeneration, and both organelles apparently exhibit extensive hydrolytic activity. Dense bodies, autophagic vacuoles, and primary lysosomes were found arising from GERL, while the Golgi apparatus may produce primary lysosomal granules during regression. On the other hand, in differentiating neurons, hydrolytic activity was restricted to GERL and an occasional dense body and autophagic vacuole. These studies illustrate a parallelism between the development of GERL and genesis of primary and secondary lysosomes during neuronal cytodifferentiation, and implicate GERL and possibly the Golgi apparatus in lysosomal packaging in degenerating neurons.  相似文献   

3.
NCS-1 (neuronal calcium sensor) is a recently characterized member of a highly conserved neuron-specific family of calcium-binding proteins, which also includes frequenin and recoverin. The cellular and subcellular distributions of NCS-1 in the rat nervous system were investigated using light- and electron-microscopic immunohistochemistry. NCS-1 immunoreactivity was localized to neuronal cell bodies and axons throughout the brain and spinal cord but not to glial cells. The most intense labeling was observed in myelinated axons, the axonal ramifications of the basket cell in the cerebellar cortex, and large neurons in the brainstem and pons. These same structures were also characterized by heavy labeling for neurofilament protein, as determined by double-labeling experiments. Most axon terminals were unlabeled or only lightly labeled. The most remarkable subcellular staining occurred in the perikarya where intense labeling was associated with the membranes of the trans saccules of the Golgi apparatus. The widespread distribution of NCS-1 indicates that it may be active in a variety of calcium-dependent neuronal functions, whereas the specific subcellular localization to the Golgi apparatus and neurofilament-rich structures suggests a specialized role in calcium regulated protein trafficking and cytoskeletal interactions.  相似文献   

4.
Summary In the suprachiasmatic nucleus (NSC) of hibernating and non-hibernating ground squirrels, the distribution of serotonin-immunoreactive (5HT-IR) fibers was studied by the use of the peroxidase-antiperoxidase technique. The cytology of perikarya giving rise to these suprachiasmatic 5HT-IR fibers was investigated in the anterior raphe nuclei. Differences in the immunoreactivity of suprachiasmatic fibers between hibernating and non-hibernating ground squirrels were determined by digital image analysis. The cellular activity was determined densitometrically after RNA-staining in anterior raphe neurons and suprachiasmatic perikarya. Abundant 5HT-IR fibers were observed in the medial and ventromedial portions of the NSC. Frequently, the fibers were found in close contact with perikarya of suprachiasmatic neurons. The central portion of the nucleus and the surrounding hypothalamic areas contained only a few scattered 5HT-IR fibers. Inside the raphe nuclei, 5HT-IR fibers and perikarya formed a dense network. In hibernating ground squirrels, the immunoreactivity to serotonin was approximately 45% higher than in non-hibernating controls. This difference is in accordance with signs of higher neuronal activity (40% higher RNA-content, 20% larger cell nuclei) in 5HT-IR perikarya of the raphe nucleus and the persisting activity of the NSC during hibernation; the activity of other brain regions dropped conspicuously in torpid animals.Supported by the Deutsche Forschungsgemeinschaft (Nu 36/2-1)  相似文献   

5.
The monoamine-synthesizing enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and tryptophan hydroxylase (TrH) were immunocytochemical localized in dopaminergic, noradrenergic and serotonergic neurons of rat brain by light and electron microscopy. In dopaminergic and serotonergic neurons, the respective synthesizing enzymes. TH and TrH, were distributed throughout the cytoplasm of the neuronal perikarya, dendrites, axons and terminals. The most selective accumulation of reaction product for the specific enzyme was associated: (a) in perikarya with endoplasmic reticulum, Golgi apparatus and microtubules, (b) in processes with microtubules, and (c) in terminals with dense granules or clear vesicles. The labeled terminals were characterized by their content of labeled organelles and the absence of synaptic junctions. In noradrenergic neurons, both TH and DBH were localized in the perikarya, similar to TH in dopamine neurons. TH and DBH differed in their localization within proximal axons and dendrites in that TH was associated with microtubules but DBH was not. These results provide ultrastructural evidence to suggest that monoamines may be: (a) synthesized by enzymes which are associated with different organelles depending on the portion of the neuron and the type of enzyme; (b) synthesized in both axons and dendrites and (c) released from terminals without postsynaptic membrane specializations.  相似文献   

6.
Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr3ghr ([Dpr(N-octanoyl)3] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH2), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5 mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.  相似文献   

7.
The neuronal perikarya of the grasshopper contain sudanophilic lipochondria which exhibit an affinity for vital dyes. These lipochondria are membrane-delimited and display acid phosphatase activity; hence they correspond to lysosomes. Unlike those of most vertebrates, these lysosomes also hydrolyze thiamine pyrophosphate and adenosine triphosphate. Like vertebrate lysosomal "dense bodies," they are electron-opaque and contain granular, vesicular, or lamellar material. Along with several types of smaller dense bodies, they are found in close spatial association with the Golgi apparatus. The Golgi complexes are frequently arranged in concentric configurations within which these dense bodies lie. Some of the smaller dense bodies often lie close to or in association with the periphery of dense multivesicular bodies. Further, bodies occur that display gradations in structure between these multivesicular bodies and the dense lysosomes. Acid phosphatase activity is present in the small as well as the larger dense bodies, in the multivesicular bodies, and in some of the Golgi saccules, associated vesicles, and fenestrated membranes; thiamine pyrophosphatase is found in both the dense bodies and parts of the Golgi complex. The close spatial association of these organelles, together with their enzymatic similarities, suggests the existence of a functional or developmental relationship between them.  相似文献   

8.
Summary Light- and electron-microscopic enzyme cytochemistry was used to localize acetylcholinesterase (AChE) activity in the synganglion (brain) of the tick Dermacentor variabilis. High AChE activity was observed throughout the neuropil as well as adjacent to most neuronal perikarya. Intracellular activity was not observed by light microscopy. By electron microscopy, reaction product was localized at the plasma membrane of glia and neurons. Enzyme activity was not associated with the olfactory globuli neurons. In other types of neurons, small amounts of reaction product were observed in the Golgi apparatus and nuclear envelope. Large neurosecretory neurons contained activity that appeared to be associated with deep invaginations of the plasma membrane as well as intracellular membranes. AChE activity was also associated with processes of both neurons and glia. In most peripheral nerves AChE activity was associated with virtually all axons. Clearly then, AChE is associated with glia and non-cholinergic neurons as well as with presumed cholinergic neurons. The widespread localization and large amounts of AChE in the tick brain exceeds that reported for other invertebrates and vertebrates. As has been suggested for other animals, AChE in the tick brain may have functions in addition to its known role in cholinergic neurotransmission.  相似文献   

9.
The distribution of gamma-aminobutyric acid (GABA) in surgical samples of human cerebellar cortex was studied by light and electron microscope immunocytochemistry using a polyclonal antibody generated in rabbit against GABA coupled to bovine serum albumin with glutaraldehyde. Observations by light microscopy revealed immunostained neuronal bodies and processes as well as axon terminals in all layers of the cerebellar cortex. Perikarya of stellate, basket and Golgi neurons showed evident GABA immunoreactivity. In contrast, perikarya of Purkinje neurons appeared to be negative or weakly positive. Immunoreactive tracts of longitudinally- or obliquely-sectioned neuronal processes and punctate elements, corresponding to axon terminals or cross-sectioned neuronal processes, showed a layer-specific pattern of distribution and were seen on the surface of neuronal bodies, in the neuropil and at microvessel walls. Electron microscope observations mainly focussed on the analysis of GABA-labelled axon terminals and of their relationships with neurons and microvessels. GABA-labelled terminals contained gold particles associated with pleomorphic vesicles and mitochondria and established symmetric synapses with neuronal bodies and dendrites in all cortex layers. GABA-labelled terminals associated with capillaries were seen to contact the perivascular glial processes, basal lamina and endothelial cells and to establish synapses with subendothelial unlabelled axons.  相似文献   

10.
Summary Certain populations of arginine vasopressin (AVP) neurons in the magnocellular paraventricular nucleus became immunoreactive for neuropeptide Y (NPY) when rats were treated with colchicine or monosodium glutamate (MSG). The co-storage of these peptides was examined by empooying a post-embedding electron-microscopic immunohistochemistry technique using goldlabeled antibodies to the two peptides. In colchicinetreated rats, the neuronal perikarya contained numerous secretory granules showing co-storage of the two peptides. The cells of the MSG-treated rats were characterized by having well-developed Golgi bodies with the granular structures also co-storing the two peptides, although the secretory granules in the perikarya were rather fewer than in the colchicine-treated rats. It is concluded that the destruction of the arcuate nucleus by MSG-treatment may potentiate the synthesis of NPY in AVP neurons, the synthesis of which is latent in intact animals.  相似文献   

11.
The composition of the neurofilament proteins (NFPs) in neuronal perikarya was examined by two-dimensional (2-D) gel electrophoresis of isolated perikarya of bovine spinal motor neurons. The extent of phosphorylation of the high molecular weight subunit of NFP (NFP-H) was compared between motor and sensory neuronal perikarya in spinal cord and spinal ganglion by immunocytochemistry with monoclonal antibodies (MAbs) to NFP. Of the 23 MAbs used in this study, one MAb (82E10) was specific to the highly phosphorylated component of NFP-H examined by 2-D immunoblot whereas another MAb (3A8) was specific to NFP-H irrespective of its level of phosphorylation. Immunocytochemically, 82E10 did not stain the perikarya of bovine and rabbit spinal motor neurons but 3A8 stained the perikarya in both animal species. These findings are consistent with 2-D immunoblot of neuronal perikarya of bovine motor neurons isolated in bulk. As for the spinal ganglia, 82E10 stained many, but not all, perikarya of sensory neurons of both animal species. These results indicate that the extent of phosphorylation of NFP-H in the perikarya of most spinal ganglion cells is higher than that of motor neurons. These findings suggest that the rate of phosphorylation of NFP-H in perikarya or the axonal transport of NFP from perikarya to proximal axons is uniform in spinal motor neurons but variable in spinal ganglion cells.  相似文献   

12.
Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2-specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation.  相似文献   

13.
The distribution of monoamine (catecholamine and 5-hydroxytryptamine)-containing nerve cell bodies in the brain stem and hypothalmus of the frog (Rana temporaria) was investigated with the help of the histofluorescence technique of Falck and Hillarp ('62). At the level of the hypothalmus of this amphibian brain, catecholamine-containing nerve cell bodies are found mainly within three areas of the periventricular gray substance, namely the peroptic recess organ, the paraventricular organ and the lateral recess region. On the other hand, most of the 5-hydroxytryptamine (serotonin)-containing nerve cell bodies of the brain stem of Rana temporaria appear to be concentrated within the midbrain tegmentum. This huge mesencephalic nerve cell collection can be subdivided into medial and lateral groups. More caudally, at the level of the isthmic tegmentum, another group of 5-hydroxytryptamine-containing perikarya located close to the midline, within the so-called raphae region, is clearly outlined. The latter group of neurons extends caudally as far as the level of the medulla oblongata. In addition, a small group of catecholamine-containing nerve cell bodies is also found in the ventromedial portion of the rostral midbrain tegmentum, whereas a few other catecholamine type neurons are scattered throughout the lower brain stem of the frog and more especially near the ependymal wall of the fourth ventricle. As a whole, the 5-hydroxytryptamine-containing neuronal systems of the brain stem of Rana temporaria are much more elaborated than the catecholamine neuronal systems of the same structure.  相似文献   

14.
Ultrastructural localization of the leptin receptor in the rat hypothalamus was studied by immunocytochemistry. The antiserum against the leptin receptor which was used specifically recognized the carboxy terminal of the cytoplasmic domain. Intense leptin receptor immunoreactivity was detected in the arcuate, paraventricular, and ventromedial nuclei of the hypothalamus and in the lateral hypothalamic area. At the ultrastructural level, leptin receptor-like immunoreactivity appeared to be concentrated predominantly in perikarya and dendrites of these areas and strong immunolabeling for the leptin receptor was detected in the plasma membrane, rough endoplasmic reticulum, Golgi apparatus, and cytoplasmic matrix. This study provides the first detailed fine structure of leptin receptor-immunoreactive neurons in the rat hypothalamus. It may help to provide better understanding of the functions of leptin in the rat hypothalamus.  相似文献   

15.
Summary The fine structure of the ventrolateral and dorsomedial subdivisions of the ventromedial nucleus (VMN) of the hypothalamus was examined in ovariectomized/control and ovariectomized/estrogen-treated rats to compare neurons of these areas to other neurons (specifically the ventrolateral thalamus), and to determine the effects of estrogen on these cells. The neurons of the VMN contain a large nucleus with a prominent nucleolus, rough endoplasmic reticulum (RER), polysomes, a Golgi complex, coated, uncoated and dense-cored vesicles, lysosome-like bodies, inclusion bodies, multivesicular bodies, whorl bodies and myelin figures. Similar organelles were present in the neurons of the ventrolateral thalamus, although polysomes were more prominent, and the cells lacked dense-cored vesicles in the perikarya. Differences in the cells of the VMN between ovariectomized/control and ovariectomized/estrogen-treated rats included a more conspicuous stacking of the RER and greater number of dense-cored vesicles in the estrogen-treated group in both the ventrolateral and dorsomedial subdivisions. In both areas the differences were statistically significant, although more marked in the ventrolateral subdivision. In both VMN subdivisions, the increased stacking of the RER could be correlated with the greater number of dense-cored vesicles and may reflect increased biosynthesis of a secretory product.Supported by grants from the National Institutes of Health (1 R01 NS15889-01) to R.S.C. and (HD-05751) to D.W.P.  相似文献   

16.
The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7(Fbxw8) localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7(Fbxw8) by independent approaches including Fbxw8 knockdown reveals that Cul7(Fbxw8) is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7(Fbxw8) also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7(Fbxw8) in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7(Fbxw8) in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7(Fbxw8) ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development.  相似文献   

17.
Many gastrointestinal meal-related signals are transmitted to the central nervous system via the vagus nerve and thereby control changes in meal size. The c-Fos-positive neuron has been used as a marker of neuronal activation after lipid meals to examine the contribution of a selective macronutrient on brain neurocircuit activity. In rats fed Intralipid, the c-Fos-positive neurons were highly stimulated in the nucleus of the solitary tract (NTS) and in the hypothalamus, including the paraventricular nucleus (PVN), arcuate nucleus of the hypothalamus (ARC), and ventromedial hypothalamus at 4 h lipid feeding. However, c-Fos-like immunoreactivity was markedly attenuated in these brain regions when chylomicron formation/secretion was blocked by Pluronic L-81. After lymph was diverted from the lymph cannulated animals, the rats had a lower number of c-Fos-positive cells in the NTS and ARC. In contrast, the rats had higher c-Fos-positive neurons in PVN. The present study also revealed that c-Fos-positive neurons induced by feeding of Intalipid were abolished by CCK type 1 receptor antagonist, Lorglumide. We conclude that the formation and/or secretion of chylomicron are critical steps for initiating neuronal activation in the brain.  相似文献   

18.
: The distribution of hexokinase (ATP:d -hexose 6-phosphotransferase, EC 2.7.1.1) in the rat cerebellar cortex has been studied at the electron microscopic level using the peroxidase-antiperoxidase procedure. Extensive staining of cytoplasmic regions, with some increased staining at mitochondrial profiles, was seen in the cell bodies of both neurons (basket, stellate, Lugaro, Golgi, and granule cells) and astrocytes. Oligodendrocytes showed little or no detectable staining. Purkinje cell perikarya were much less intensely stained than were the perikarya of other neurons. The initial portion of the Purkinje dendrite was, like the perikaryon from which it emerged, lightly stained. More intense staining was seen in the secondary and tertiary branches of the Purkinje dendrite, but the terminal branches were devoid of stain. Granule cell dendrites were well stained in their initial portions but devoid of stain in their terminal dendritic digits which form part of the cerebellar glomeruli. In contrast to the unstained granule cell dendritic digits, the central mossy fiber nerve terminal of the glomerulus exhibited intense staining of the mitochondrial profiles and of synaptic vesicles adjacent to the mitochondria. Axons of basket cells showed intense staining in the segments adjacent to the Purkinje cell soma, while terminal twigs of the basket axons in the pinceau surrounding the (unstained) initial segment of the Purkinje axon showed markedly decreased staining intensity. These results indicate that there may be substantial variation in hexokinase levels between the various regions of neuronal processes. Hexokinase was seen at both cytoplasmic and mitochondrial locations in a variety of cells. It does not appear likely that location of hexokinase can be directly correlated with cell type, i.e., with neurons versus glia.  相似文献   

19.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

20.
A monoclonal antibody (mAb 10A8), derived from mice immunized with fractions of the Golgi apparatus from rat brain neurons, was exploited to isolate and partially characterize a novel glycoprotein of 160 kDa apparent molecular mass which was localized by immunoelectron microscopy in medial cisternae of the Golgi apparatus of neurons, glia, pituitary cells, and rat pheochromocytoma (PC 12). The yield of immunoaffinity purified protein was 0.9 microgram/g of rat brain and represented 3% of the Golgi protein; the protein contained asparagine-linked carbohydrates and sialic acid and N-acetylglucosamine residues; unreduced protein had a greater electrophoretic mobility (130 kDa) consistent with the presence of intrachain disulfide bonds. The bulk of the glycoprotein resided within the membrane and/or luminal face of the Golgi cisternae. After extraction with Triton X-114, the glycoprotein was found in both aqueous and detergent phases. The monoclonal antibody did not inhibit the activities of Golgi enzymes or the uptake of nucleotide sugars by intact Golgi vesicles. The findings indicate that the 160-kDa glycoprotein is a specific constituent of medial Golgi cisternae. The results of this study lend support to the hypothesis that the distributions of glycosyltransferases in the Golgi apparatus are cell specific, since in neurons this sialic acid containing glycoprotein is found in medial rather than in trans and/or in the trans Golgi reticulum cisternae, where sialyltransferases have been localized in other cells. Alternatively, resident neuronal Golgi sialoglycoproteins may acquire sialic acid in trans elements of the apparatus and then shuttle back in medial cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号