首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Interactions Between Limb Regeneration and Molting in Decapod Crustaceans   总被引:3,自引:1,他引:2  
Molting and regeneration of lost appendages are tightly-coupled,hormonally-regulated processes in decapod crustaceans. Precociousmolts are induced by eyestalk ablation, which reduces circulatingmolt-inhibiting hormone (MIH) and results in an immediate risein hemolymph ecdysteroids. Precocious molts are also inducedby autotomy of 5–8 walking legs; adult land crabs (Gecarcinuslateralis) molt 6–8 wk after multiple leg autotomy (MLA).Autotomy of one or more of the 1° limb buds (LBs) that formafter MLA before a critical period interrupts proecdysis until2° LBs re-regenerate and grow to the approximate size ofthose lost. Based on these observations, Skinner proposed thatlimb buds produce two factors that control proecdysial events.Limb Autotomy Factor–Anecdysis (LAFan), produced by 1°LBs when at least five legs are autotomized, stimulates anecdysialanimals to enter proecdysis. Limb Autotomy Factor–Proecdysis(LAFpro), produced by 2° LBs in premolt animals when atleast one 1° LB is autotomized, inhibits proecdysial processes.Initial characterizations suggest that LAFpro is a MIH-likepolypeptide that inhibits the synthesis and secretion of ecdysteroidby the Y-organs.  相似文献   

2.
Interacting Factors in the Control of the Crustacean Molt Cycle   总被引:1,自引:1,他引:0  
In order to account for the known phenomena of the crustaceanmolt cycle, at least six factors must be postulated: a moltinghormone (20-OH-ecdysone), a molt-inhibiting hormone (MIH), ananecdysial limb autotomy factor, a proecdysial limb-autotomyfactor, a limb growth-inhibiting factor and an exuviation factor.Only the molting hormone and its derivatives have been chemicallywell defined. The various factors interact in complex ways tomaintain not only a coordinated proecdysial period in preparationfor exuviation but also a proecdysial period with the flexibilityto respond to such interim hazards as the loss of partiallyregenerated limbs.  相似文献   

3.
中华绒螯蟹蜕皮抑制激素基因全长cDNA克隆和重组表达   总被引:1,自引:0,他引:1  
根据实验室分离自中华绒螯蟹(Eriocheir sinensis)的一种蜕皮抑制激素(Molting-inhibiting hormone,MIH)N端氨基酸测序结果设计简并引物,采用RACE方法,首次从中华绒螯蟹眼柄中克隆到蜕皮抑制激素基因全长cDNA(Es-MIH,GenBank登录号:DQ341280),该基因全长为1457 bp,开放阅读框为330 bp,编码110个氨基酸(含有35个氨基酸的信号肽);其成熟肽包含C7-C44、C24-C40和C27-C53三个二硫键,有典型的CHH家族结构域。该cDNA编码的氨基酸序列与地蟹(Gecarcinus lateralis)MIH同源性最高,达到了85%。Northern杂交和半定量RT-PCR显示蜕皮间期成体蟹仅在眼柄中有MIH基因表达,提示该基因的表达具有一定组织特异性。利用pCR T7/NT TOPO TA系统重组表达MIH成熟肽,纯化的重组蛋白得率为0.3 g/L,纯化产物经质谱鉴定为中华绒螯蟹MIH。研究解决了CHH家族神经肽在机体中的表达量少,直接纯化较难的问题,为深入研究MIH的作用机制和在生产上控制中华绒螯蟹蜕皮和生长奠定了基础。  相似文献   

4.
In decapod crustaceans, molt hormone (ecdysone) production by Y-organs is suppressed by an eyestalk neurosecretory product, molt-inhibiting hormone (MIH). Environmental stressors are known to delay or prevent molting in crabs. The present study assesses the function of the MIH-Y-organ neuroendocrine system in the crab Cancer antennarius under conditions of daily handling stress. After three days, stressed crabs showed significant suppression of hemolymph ecdysteroid levels, which continued to fall to 20% of controls by day 14. Ecdysteroid titers of stressed crabs returned to prestress levels seven days after stress termination. Ecdysteroid levels in de-eyestalked (DES) crabs rose 160% within 48 hr post-DES. Stressing DES crabs over 16 subsequent days did not significantly alter ecdysteroid levels compared with unstressed DES controls. Handling stress thus depresses hemolymph ecdysteroid levels in the crab, a response that is mediated by eyestalks and appears to result from stress-induced MIH release.  相似文献   

5.
6.
Paired Y-organs secrete ecdysteroid hormones that control cycles of growth and molting in crustaceans. Y-Organs are regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide produced and released by the X-organ/sinus gland complex of the eyestalks. In the present studies, crab (Callinectes sapidus) Y-organs were incubated in vitro in the presence of [(35)S]methionine, and cyclic nucleotide analogs or experimental agents that influence the cAMP signaling pathway. In 4-hr incubations, 8-Br-cAMP and db-cAMP (but not 8-Br-cGMP) suppressed incorporation of [(35)S]methionine into Y-organ proteins; the effect of 8-Br-cAMP was concentration-dependent. Autoradiograms of radiolabeled Y-organ proteins separated on SDS-PAGE gels indicated the effect of 8-Br-cAMP was general (as opposed to selective) suppression of protein synthesis. Addition of both forskolin (an adenylyl cyclase activator) and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) likewise suppressed incorporation of [(35)S]methionine into Y-organ proteins. Cycloheximide (a protein synthesis inhibitor) suppressed incorporation of [(35)S]methionine into Y-organ proteins and secretion of ecdysteroids. The combined results suggest that cAMP is involved in regulation of protein synthesis in C. sapidus Y-organs. We are currently investigating the link of protein synthesis to ecdysteroid production, and the possibility of cross-talk between cAMP and other cellular signaling pathways in Y-organs.  相似文献   

7.
Secretion of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated (inhibited) by molt-inhibiting hormone (MIH), a neuropeptide produced by neurosecretory cells in eyestalk ganglia. The inhibitory effect of MIH is mediated by one or more cyclic nucleotide second messengers. In addition, available data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular calcium. However, despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(2+) in Y-organs cells has not been previously determined. In studies reported here, eyestalks were ablated from blue crabs (Callinectes sapidus) to remove the endogenous source of MIH and activate Y-organs. At 0, 3, 6, and 9 days after eyestalk ablation (D0, D3, D6, and D9, respectively), the level of Ca(2+) in Y-organ cells was determined using a fluorescent calcium indicator (Fluo-4), and the hemolymphatic ecdysteroid titer was determined by radioimmunoassay. Calcium fluorescence in D6 Y-organs was 3.5-fold higher than that in D0 controls; calcium fluorescence in D9 Y-organs was 3.9-fold higher than in D0 controls (P<0.05). Measurement of fluorescence along a transect drawn through representative cells indicated that the calcium fluorescence was localized to cytoplasm and not to nuclei. Associated with the increase in intracellular Ca(2+) was a significant increase in the hemolymphatic ecdysteroid titer: The level of ecdysteroids in hemolymph rose from 5.5?ng/mL on D0 to 49.6?ng/mL on D6 and 87.2?ng/mL on D9 (P<0.05). The results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(2+).  相似文献   

8.
Summary The production of ecdysteroids (monitored by RIA) by Y-organs and cephalic glands in vitro was measured and hemolymph ecdysteroid levels were determined in the crayfish,Orconectes limosus, both after eyestalk ablation and as a function of time during natural premolt. Y-organ synthesis of ecdysteroid increased in parallel with a rise in hemolymph ecdysteroid concentrations under both conditions, peaking in substage D2 of premolt. Y-organ ecdysteroid output after eyestalk ablation was 3–4 times higher. Thus, removal of the inhibiting system of the eyestalk effectively removes not only the principal control but also any modulation of ecdysteroid secretion by the Y-organs. Ecdysteroid levels remained low in Y-organ-ectomized crayfish, although premolt was initiated in some animals. The cephalic gland does not appear to contribute to the regulation of molting inOrconectes limosus. The Y-organs, on the other hand, are a principal source of ecdysteroids which regulate the major synthetic activities of premolt.  相似文献   

9.
The rôle of the moulting hormone in regeneration was studied in Porcellio dilatatus by destroying the Y-organs (moulting glands) and by injecting synthetic ecdysterone. The destruction of the Y-organs prevents the formation of the regeneration bud of the limb. Several successive injections of a very weak solution of ecdysterone allow the formation of a regeneration bud in animals without Y-organs. A single injection of ecdysterone at a dose which induces apolysis blocks regeneration by making all the epidermal cells secrete cuticle, including those of the regeneration bud.  相似文献   

10.
Molt-inhibiting hormone (MIH) negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in insect cells using recombinant baculovirus. Insect Sf9 cells were transfected with recombinant baculovirus containing a DNA insert encoding the C. sapidus MIH prohormone (signal sequence plus mature hormone). The construct was designed to yield a mature, fully processed recombinant MIH (recMIH). Several baculovirus recombinants showing no contamination with wild-type viral DNA were subsequently analyzed for their ability to direct expression of recMIH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins from infected cells revealed time-dependent expression of two proteins of approximately the predicted size for the C. sapidus MIH prohormone and mature hormone. Western blot results (using antiserum against MIH of Carcinus maenas) indicated that the proteins were MIH-immunoreactive. N-Terminal amino acid sequence data and mass spectral analysis indicated the expressed proteins were of the correct sequence and molecular mass. Cell lysates containing the recombinant protein dose-dependently suppressed the synthesis of ecdysteroids by Y-organs in vitro. We anticipate the recombinant peptide will prove useful for studies of the structure and function of MIH.  相似文献   

11.
Secretion of ecdysteroid molting hormones by crustacean Y-organs is suppressed by molt-inhibiting hormone (MIH). The suppressive effect of MIH on ecdysteroidogenesis is mediated by one or more cyclic nucleotide second messengers. In addition, existing data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular Ca(++). Despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(++) in Y-organ cells has not been previously measured during a natural molting cycle for any crustacean species. In studies reported here, a fluorescent calcium indicator (Fluo-4) was used to measure Ca(++) levels in Y-organs during a molting cycle of the blue crab, Callinectes sapidus. Mean calcium fluorescence increased 5.8-fold between intermolt (C4) and stage D3 of premolt, and then dropped abruptly, reaching a level in postmolt (A) that was not significantly different from that in intermolt (P>0.05). The level of ecdysteroids in hemolymph of Y-organ donor crabs (measured by radioimmunoassay) showed an overall pattern similar to that observed for calcium fluorescence, rising from 2.9 ng/mL in intermolt to 357.1 ng/mL in D3 (P<0.05), and then dropping to 55.3 ng/mL in D4 (P<0.05). The combined results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(++).  相似文献   

12.
Both male and female field crickets (Gryllus bimaculatus) autotomize front (tympanal) limbs more slowly than hind limbs. Arguably, this pattern could reflect possible differences in the mechanism of limb autotomy. However, we demonstrate that, for females, limb autotomy is also dependent on their mating status: virgin females autotomize front legs significantly more slowly than mated females. This response suggests a central control for leg autotomy in these animals, and less readiness to autotomize a front leg, possibly because the tympanum is crucial for mate location.  相似文献   

13.
Molting processes in crustaceans are regulated by ecdysteroids produced in the molting gland (Y-organ), and molting is indirectly controlled by circulating factors that inhibit the production of these polyhydroxylated steroids. Two of these regulatory factors are the neuropeptides molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). CHH appears to inhibit ecdysteroidogenesis in the Y-organ through the activation of a receptor guanylyl cyclase. The signaling pathway activated by MIH, however, remains a subject of controversy. It is clear that neuropeptides inhibit ecdysteroidogenesis by simultaneously suppressing ecdysteroid biosynthetic processes, protein synthesis, and uptake of high density lipoproteins. Data demonstrate that cAMP is the primary regulator of critical catabolic, anabolic, and transport processes, which ultimately support the capacity for ecdysteroid production by the Y-organ. While cAMP also regulates acute ecdysteroidogenesis to some extent, data indicate that cGMP is the primary signaling molecule responsible for acute inhibition by neuropeptides. It is clear that the regulatory roles filled by cAMP and cGMP are conserved among decapod crustaceans. It is unknown if these complementary second messengers are linked in a single signaling pathway or are components of independent pathways activated by different factors present in extracts of eyestalk ganglia.  相似文献   

14.
Crustacean Y-organs produce ecdysteroid molting hormones. Regulation of ecdysteroidogenesis appears to be complex, involving regulatory ligands (including but not limited to molt-inhibiting hormone, an eyestalk neurohormone) and the capacity of the Y-organs to respond to those ligands. Available data indicate cell signaling pathways involving cAMP, cGMP, or both may be involved in regulation of Y-organ function. Trimeric G proteins link receptor occupancy to regulation of intracellular cAMP levels. In studies reported here, we have assessed the occurrence of G proteins in blue crab (Callinectes sapidus) Y-organs, and the link of G proteins to Y-organ function. Bacterial toxin-catalyzed ADP-ribosylation revealed a PTX-sensitive (alpha i-like) protein in Y-organ membranes, but failed to reveal a CTX-sensitive (alpha s-like) protein in Y-organ membranes. Western blotting with primary antibodies raised against conserved regions of mammalian G proteins detected an alpha i-immunoreactive protein (approximately 40 kDa) and two alpha s-immunoreactive proteins (approximately 50 and approximately 57 kDa) in Y-organ membrane preparations. Incubation of Y-organ membrane fractions with cholera toxin significantly suppressed incorporation of [35S]-methionine into TCA-precipitable Y-organ proteins, but had no detectable effect on ecdysteroidogenesis in short-term (6 h) incubations. The combined results indicate that C. sapidus Y-organs possess both Gi and Gs proteins, and that alpha s is functionally linked to regulation of glandular protein synthesis.  相似文献   

15.
The present study was focused on the regulation of ecdysteroidogenesis in the Y-organ of Scylla serrata during molting cycle. A strong expression of molt-inhibiting hormone (MIH) and phosphorylation of ERK was predominantly observed in the postmolt and intermolt stages of Y-organs, whereas protein kinase C, steroidogenic acute regulatory protein (StAR) and cytochrome P450(scc) activity were exclusively seen in the premolt stages. Interestingly, inhibition of ERK phosphorylation by PD98059 in the early postmolt (A), middle postmolt (B) and intermolt (C) stages resulted in the prominent expression of PKC and StAR in the postmolt stages. This result indicates that phosphorylation of ERK is required for suppression of ecdysteroid biosynthesis with the involvement of protein kinase C, and StAR protein.  相似文献   

16.
Regeneration of Walking Legs in the Fiddler Crab Uca pugilator   总被引:1,自引:0,他引:1  
SYNOPSIS. Regeneration of walking legs in the fiddler crab Ucapugilator is most efficient when it follows autotomy (the reflexiveloss of a limb). Closure of the wound and would healing occurimmediately following autotomy and visible regeneration beginswithin a few days. Regeneration of the walking leg occurs intwo distinct stages: The first stage, called Basal Growth, involvesmitosis and differentiation. The second stage involves primarilyprotein synthesis and water uptake and is called ProecdysialGrowth. Proecdysial Growth is, in part, under direct hormonalstimulation.  相似文献   

17.
Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular.  相似文献   

18.
Ecdysteroids, the molting hormones in crustaceans and other arthropods, play a crucial role in the control of growth, reproduction and embryogenesis of these organisms. Insecticides are often designed to target specific endocrine-regulated functions such as molting and larval development such as methoprene, a juvenile hormone analogue.The aim of this study was to examine the effects of methoprene on molting in a non-target species, the estuarine mysid Neomysis integer (Crustacea: Mysidacea). Mysids have been proposed as standard test organisms for evaluating the endocrine disruptive effect of chemicals. Juveniles (< 24 h) were exposed for 3 weeks to the nominal concentrations 0.01, 1 and 100 μg methoprene/l. Daily, present molts were checked and stored in 4% formaldehyde for subsequent growth measurements. Methoprene significantly delayed molting at 100 μg/l by decreasing the growth rate and increasing the intermolt period. This resulted in a decreased wet weight of the organism. The anti-ecdysteroidal properties of methoprene on mysid molting were also evaluated by determining the ability of exogenously administered 20-hydroxyecdysone, the active ecdysteroid in crustaceans, to protect against the observed methoprene effects. Co-exposure to 20-hydroxyecdysone did not mitigate methoprene effects on mysid molting. This study demonstrates the need for incorporating invertebrate-specific hormone-regulated endpoints in regulatory screening and testing programs for the detection of endocrine disruption caused by man-made chemicals.  相似文献   

19.
20.
In Crustacea, secretion of ecdysteroid molting hormones by Y-organs is regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide neurohormone produced by neurosecretory cells of the eyestalks. This article reviews current knowledge of MIH, with particular emphasis on recent findings regarding the (a) structure of the MIH peptide and gene, (b) levels of MIH in eyestalks and hemolymph, (c) cellular mechanism of action of MIH, and (d) responsiveness of Y-organs to MIH. At least 26 MIH/MIH-like sequences have been directly determined by protein sequencing or deduced from cloned cDNA. Recent studies reveal the existence of multiple forms of MIH/MIH-like molecules among penaeids and raise the possibility that molecular polymorphism may exist more generally among MIH (type II) peptides. The hemolymphatic MIH titer has been determined for two species, a crayfish (Procambarus clarkii) and a crab (Carcinus maenas). The data are dissimilar and additional studies are needed. Composite data indicate cellular signaling pathways involving cGMP, cAMP, or both may play a role in MIH-induced suppression of ecdysteroidogenesis. Data from the two species studied in our laboratories (P. clarkii and Callinectes sapidus) strongly favor cGMP as the physiologically relevant second messenger. Ligand-binding studies show an MIH receptor exists in Y-organ plasma membranes, but the MIH receptor has not been isolated or fully characterized for any species. Such studies are critical to understanding the cellular mechanism by which MIH regulates ecdysteroidogenesis. Rates of ecdysteroid synthesis appear also to be influenced by stage-specific changes in the responsiveness of Y-organs to MIH. The changes in responsiveness result, at least in part, from changes in glandular phosphodiesterase (PDE) activity. The PDE isotype (PDE1) present in Y-organs of C. sapidus is calcium/calmodulin dependent. Thus, calcium may regulate ecdysteroidogenesis through activation of glandular PDE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号