首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DeMott WR  Pape BJ 《Oecologia》2005,142(1):20-27
We used laboratory experiments with ten Daphnia taxa to test for links between Daphnia P-content, growth rate and habitat preference. The taxa represent a wide range of body sizes and most show distinct preferences for one of three habitats: shallow lakes, deep, stratified lakes or fishless ponds. Previous studies show that taxa from shallow lakes and fishless ponds experience high predation risk and rich food resources, whereas taxa from deep lakes experience low predation risk, strong food limitation and potentially P-deficient resources. Thus, we predicted higher P-content and higher maximal growth rates in taxa from ponds and shallow lakes and lower P-content, lower maximal growth but reduced sensitivity to P-limitation in taxa preferring stratified lakes. In each of 25 experiments, a clonal Daphnia cohort was cultured for 4 days on a P-sufficient (molar C:P ratio 70) or a P-deficient (C:P 1,000) diet of a green alga at a high concentration (1 mg C l–1). The P-content of adult Daphnia fed the P-sufficient diet ranged from 1.52 to 1.22% mass. Small-bodied taxa from shallow lakes had higher P-content than larger-bodied taxa from deep lakes or fishless ponds. However, we found a nonsignificant negative correlation between P-content and growth on the P-sufficient diet, rather than the positive relationship predicted by the growth rate hypothesis. The P-deficient diet resulted in declines in both growth rate and P-content compared with the P-sufficient controls and the extent of the declines differed between taxa. Taxa from ponds showed a marginally greater decline in growth with the P-deficient diet compared with taxa from shallow or deep lakes. However, contrary to stoichiometric theory, no relationship was found between a species P-content and growth depression on the P-deficient diet. Although we found evidence for habitat adaptations, our results show that factors other than Daphnia P-content are important in determining differences between Daphnia species in both maximal growth rate and sensitivity to P-limited growth.  相似文献   

2.
Patterns and sources of variation in Daphnia phosphorus content in nature   总被引:1,自引:0,他引:1  
It has recently been shown that Daphnia can vary in the phosphorus (P)-content of their body tissues, but the relative importance of genetic versus environmental causes for this variation is unexplored. We measured variation in P-content (as % body mass) of Daphnia from eight lakes and conducted experiments to contrast three sources of variation: interspecific variation, clonal variation and phenotypic plasticity. Daphnia P-content decreased with increasing seston C:P ratio across lakes. This relationship reflected both inter- and intraspecific variation. Daphnia parvula and D. dubia exhibited high P-content and were found in shallow lakes with low C:P seston, whereas D. pulicaria had low P-content and was found in deep, stratified lakes having high C:P seston. Populations of D. dentifera spanned this lake gradient and exhibited P-content that was negatively related to seston C:P. Evidence for phenotypic plasticity came from experiments with D. pulicaria and D. dentifera collected from a lake with P-deficient seston and fed a P-sufficient diet in the laboratory. In addition, populations of D. dentifera differed in P-content even after 7 d of feeding on P-sufficient resources, suggesting within-species clonal variation. However, mesocosm experiments revealed broad and surprisingly continuous variation in the P-content of individual clones of D. pulex (range 1.54–1.05%) and D. mendotae (1.51–1.07%) over a gradient in dietary C:P. The broad range in P-content exhibited by individual clones, acclimated for generations, suggests that variation in Daphnia P-content from laboratory experiments needs to be interpreted with caution. These results also show that phenotypic variation in response to environment can be a larger source of variation in P-content than genetic differences within or among species.  相似文献   

3.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

4.
We found that species-specific differences exist among a variety of freshwater algae and cyanobacteria in the extent to which growth and photosynthesis are inhibited by vanadium. A major factor controlling the degree of inhibition by vanadium was the phosphorus state (P-sufficient vs. P-deficient) of the organisms. In P-sufficient cultures, vanadium was inhibitory when the vanadium concentration exceeded the phosphate concentration. In P-deficient cultures, the depression of photosynthesis by vanadium increased with increasing phosphorus deficiency. Our conclusion that vanadium competed with phosphate for uptake sites was supported by the following three observations: 1) the decreased influx of 32P-PO 4 into P-deficient cells in the presence of vanadium, 2) the amelioration of vanadium inhibition of photosynthesis by the addition of phosphate, and 3) the accumulation of vanadium by cells. At vanadium concentrations that severely inhibited growth, the cells of Scenedesmus obliquus (Turp.) Kruger were larger than normal and contained more vacuoles, lipid, and starch bodies than normal cells. Four-celled coenobia were replaced by unicells. Scenedesmus acutusf: alternans Hortobagyi cells from vanadium-inhibited cultures had 7.5 times more vanadium per cell than control cultures and contained numerous granules that did not stain for polyphosphate and may be composed of condensed vanadate molecules. The cellular P quota and turnover time of PO4in the medium are important regulators of the extent of inhibition by vanadium.  相似文献   

5.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

6.
Clearance rates of sessile rotifers: in vitro determinations   总被引:1,自引:1,他引:0  
We measured laboratory clearance rates of 10 rotifer and one unidentified bryozoan species from 3 different lakes using 32P labeled algae (Chlamydomonas) or yeast (Rhodotorula). Clearance rates for all rotifers fed yeast ranged from < 2.0 to > 260 µl · animal–1 · h–1 depending on species. The in vitro clearance rates of two sessile rotifers (Ptygura crystallina and P. pilula) were not significantly different from previously measured in situ rates (Wallace and Starkweather 1983). Clearance rates for 5 rotifers fed algae ranged from < 5.0 to > 90.0 µl · animal–1 · h–1. Ptygura beauchampi, P. crystallina, P. pilula, Floscularia conifera, and F. melicerta ingested both cell types but their clearance rates varied substantially among species and between cell types. There was a substantial time-dependent loss of 32P from formalin-fixed animals (Sinantherina socialis) awaiting processing. This loss stabilized at approximately 20 hours and was estimated to be about 40% of the initial ingested label. Clearance rates for the bryozoan fed yeast or algae were highly variable, ranging from < 1.0 to > 3 000 µl · animal–1 · h–1.  相似文献   

7.
Rabe E  Lovatt CJ 《Plant physiology》1984,76(3):747-752
Young, fully expanded leaves from 7-month-old P-deficient citrus rootstock seedlings had levels of nonprotein arginine that were 10- to 50-fold greater than those from P-sufficient control plants. Arginine content of the protein fraction increased 2- to 4-fold in P-deficient leaves. Total arginine content, which averaged 72 ± 6 micromoles per gram dry weight of P-sufficient leaf tissue (mean ± se, n = the four rootstocks) was 207, 308, 241, and 178 micromoles in P-deficient leaves from Citrus limon cv rough lemon, Poncirus trifoliata × C. sinensis cv Carrizo citrange and cv Troyer citrange, and P. trifoliata cv Australian trifoliate orange, respectively. For each rootstock, the accumulation of arginine paralleled an increase in the activity of the pathway for the de novo biosynthesis of arginine. The ratio of the nanomoles NaH14CO3 incorporated into the combined pool of arginine plus urea per gram fresh weight intact leaf tissue during a 3-hour labeling period for P-deficient to P-sufficient plants was 91:34, 49:11, 35:11, and 52:41, respectively. When P-deficient plants were supplied with P, incorporation of NaH14CO3 into arginine plus urea was reduced to the level observed for the P-sufficient control plants of the same age and arginine ceased to accumulate. Arginase and arginine decarboxylase activity were either unaffected or slightly increased during phosphorus deficiency. Taken together, these results provide strong evidence that arginine accumulation during phosphorus deficiency is due to increased activity of the de novo arginine biosynthetic pathway.  相似文献   

8.
Xu  D.  Dell  B.  Malajczuk  N.  Gong  M. 《Plant and Soil》2001,233(1):47-57
Eucalypt plantations in China have largely been established on soils that are low in phosphorus (P) and have few eucalypt-compatible ectomycorrhizal fungi. Effects of P application and ectomycorrhizal fungal inoculation on early tree growth in plantations of Eucalyptus urophylla Blake in Guangdong (Gaoyao) and E. globulus Labill. in Yunnan (Chuxiong) in southern China were investigated as part of a larger study. Application of superphosphate at establishment, in the presence of a basal fertiliser, increased early growth of E. urophylla and E. globulus. The optimum treatments for maximum stand volume at year 3 were 200 kg P ha–1 which increased stand volume by 750% on the strongly acidic, P-deficient lateritic red oxisol at Gaoyao, and 40 kg P ha–1 which increased stand volume by 55% on the mildly P-deficient red ultisol at Chuxiong, at 3 years. Superphosphate increased tree survival at Gaoyao as well as at Chuxiong. Nursery inoculation of eucalypt seedlings with ectomycorrhizal fungi significantly affected tree height and stand volume of the E. urophylla plantation, but the effect (positive or negative) was isolate-dependent and related to tree survival rate. A Laccaria isolate (CSIRO E4728) significantly increased stand volume by 27% at Gaoyao and a Scleroderma (MURU LH041) increased growth by 15% at Chuxiong at age 3 years. All isolates increased tree growth under P-limited soil conditions and only one isolate increased tree growth at marginal soil P. The results suggest that tree growth should be able to be optimised in plantations by the use of effective ectomycorrhizal fungi combined with a judicious fertilisation program at establishment.  相似文献   

9.
Hocking  P.J.  Jeffery  S. 《Plant and Soil》2004,258(1):135-150
We examined the capacity of several Old-World lupin species (Lupinus luteus L., L. hispanicus Boiss. et Reuter and L. angustifolius L.) and one species of a New-World lupin (L. mutabilis Sweet) to form cluster roots under a range of conditions in solution culture. The effect of the synthetic auxin, IBA (indole-3-butyric acid), on cluster-root development in L. luteus and L. albus L. provided with an adequate phosphorus (P) supply was also investigated. In addition, the effect of a high nitrate-N (NO3-N) supply on the efflux of citrate and malate from roots of L. angustifolius was examined to determine if specific regions of the root system exuded these organic anions. When P-deficient, L. hispanicus, L. luteus and L. mutabilis formed cluster roots that secreted organic anions. Citrate was generally the dominant organic anion exuded, although succinate was also exuded in large quantities from L. luteus. Citrate efflux by L. hispanicus and L. luteus was at least comparable to that reported for P-deficient L. albus[up to 1.092 nmol g–1 fresh weight (FW) s–1], but was over an order of magnitude lower in L. mutabilis (0.036 nmol g–1 FW s–1). Citrate and malate were not detected in significant amounts from either the lateral roots or the root tips of any species grown under P-sufficient or -deficient conditions. Citrate efflux from cluster roots of L. luteus showed a diurnal pattern, similar to that reported for L. albus, with maximum efflux during the day, and declining to a minimum before dawn. IBA added to the nutrient solution induced cluster-root formation on both L. albus and L. luteus at concentrations of P that would normally suppress the production of these roots. However, the IBA-induced cluster roots did not exude significant amounts of citrate. Although L. angustifolius did not produce cluster roots when P-deficient, it produced cluster-like root structures that exuded citrate (0.053 nmol g–1 FW s–1) when grown at a high nitrate-N (NO3-N) supply. L. angustifolius did not exude significant citrate or malate from lateral roots or root tips when grown at either high or low NO3-N supply. Our findings for L. hispanicus and L. luteus are the first reports of cluster-root formation in response to P deficiency for these Old-World species, and for L. mutabilis, it is the first report of cluster roots for a New-World lupin species. These reports indicate that evolutionary and biogeographical aspects of cluster-root formation in the genus Lupinus need to be revised. Furthermore, investigation is warranted to determine the capacity of species of the large group of New-World lupins to form cluster roots in soils of their native habitats.  相似文献   

10.
Field investigations during the ice-free period of 1980 confirm that the dominant attached filamentous algae in the Canadian waters of Lake Huron are the green algae Ulothrix zonata and Cladophora glomerata, and the red alga Bangia atropurpurea. It is believed that nutrient availability limits the distribution of these algae, while temperature controls their seasonal periodicity. Because of favourable physical characteristics, the study area represents a vast potential habitat for attached filamentous algae. It is expected that eastern Georgian Bay, in particular, will suffer significant environmental degradation from the growth of Cladophora unless existing phosphorus levels are maintained indefinitely (i.e., < 0.005 mg total P 1–1). Attached filamentous algae accumulate (103 to 105 x) a variety of elements primarily in proportion to availability in the surrounding water. The occurrence of maximum algal metal concentrations at municipal waste water outfalls, river mouths and harbour areas (e.g., in µg g–1, Cr 29.0, Cu 46.4, Ni 34.0, Pb 55.0) is indicative of discrete source loadings, while elevated levels at remote sites in eastern Georgian Bay (e.g., in µg g–1, Cr 12.0–15.5, Cu 18.0, Ni 15.0–16.0, Pb 8.5–8.8) are suggestive of generalized loadings from the Canadian Shield, possibly due to the effects of acidic precipitation.  相似文献   

11.
Summary Absorption of nitrate and ammonium was studied in water culture experiments with 4 to 6 weeks old plants of barley (Hordeum vulgare L.), buckwheat (Fagopyrum esculentum L. Moench) and rape (Brassica napus L.). The plants were grown in a complete nutrient solution with nitrate (5.7±0.2 mM) or nitrate (5.6±0.2 mM) + ammonium (0.04±0.02 mM). The pH of the nutrient solution was kept at 5.0 using a pH-stat. It was found that phosphorus deficiency reduced the rate of nitrate uptake by 58±3% when nitrate was the sole N source and by 83±1% when both nitrate and ammonium were present. The reduction occurred even before growth was significantly impeded by P deficiency. The inhibition of the uptake of ammonium was less,i.e. ammonium constituted 10±1% of the total N uptake in the P sufficient plants and 30±5% in the P deficient plants. The reduction of nitrate absorption greatly decreased the difference between the uptake of anions and cations. It is suggested that P deficiency reduced the assimilation of NO 3 into the proteins, which might cause a negative feedback on NO 3 influx and/or stimulate NO 3 efflux.  相似文献   

12.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

13.
Two micronized waste products were evaluated in a closed recirculation system for their suitability to replace a costly die of live algae in the culture of the Sudanese fairy shrimp,Streptocephalus proboscideus. The test population was kept at a density of 50 individuals 1–1 (sex ratio:1/1). An agricultural waste product (YM20; mixture of pea and corn), and an industrial waste product (POME; Palm Oil Mill Effluent) were fed at two regimes: 0.1 and 0.2mg DW animal–1 h–1. The microalgaSelenastrum capricornutum, used as a reference diet at a density of 2.0±0.82 × 105 cells ml–1, proved adequate in preliminary screening experiments. The effect of the diets and feeding regimes on selected biological variables and water quality were followed by weekly observations and measurements. Results in terms of growth (=increase in length), cyst production, and mortality were more successful when animals were supplied high densities of YM20 than in all other treatments: mean brood size was 155±6 cysts with a maximum of 266. Length after 6 weeks about 2 cm while this ranged between1.4–1.7 cm for the other treatments. Weekly mortality rate was comparable under high food conditions. Mortality rate gradually increased from 5% in the first week to 15% in the last week. Water quality, especially nitriate concentration (measured as NO2-N), was slightly better in the dry food fed than in the algae fed cultures. Present results are promising for large-scale culturing ofS. proboscideus in a cost-effective way by making use of agro-industrial waste products.  相似文献   

14.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2000,435(1-3):117-126
Algal food density is known to influence life history variables of cladoceran species. It is not, however, well established whether both littoral and planktonic cladocerans show similar trends when exposed to increasing food concentrations. In the present work, we studied the life table demography of four cladoceran species (Ceriodaphnia cornuta, Moina macrocopa, Pleuroxus aduncus and Simocephalus vetulus) in relation to three algal food concentrations (low: 0.5 × 106, medium: 1.5 × 106 and high: 4.5 × 106 cells ml–1 of Chlorella vulgaris) (in terms of carbon content, these were equivalent to 0.15, 0.45 and 1.35 g ml–1, respectively) at 25 °C. In general, for all the tested cladoceran species, values of average lifespan, gross reproductive rate, net reproductive rate, generation time and the rate of population growth were higher at lower food concentrations. Furthermore, high food concentration resulted in a negative population growth rate (mean ± standard error: –0.091 ± 0.026) for P. aduncus. The highest population growth rate (0.602 ± 0.014) was recorded for M. macrocopa at low food density. S. vetulus had the longest average lifespan (40 ± 1 d) while M. macrocopa had the lowest (5 ± 1 d). C. cornuta showed better performance at medium food concentration. We conclude that among the algal concentrations used here, 0.5 × 106 – 1.5 × 106 was beneficial not only to the planktonic species but also to the littoral P. aduncus and S. vetulus while 4.5 × 106 cells ml–1 was unsuitable for all the cladocerans tested.  相似文献   

15.
This study calculated the compositional nutrient diagnosis (CND) norms of cowpea (Vigna unguiculata (L.) Walp.), as well as identified significant nutrient interactions of this crop growing in an irrigated calcareous desert soil. Three genotypes were distributed in rows in a 2-ha field. The soil showed high heterogeneity in its chemical properties. For statistical analysis, 86 foliar composite samples from healthy plants were used. Preliminary CND norms were developed using a cumulative variance ratio function and the 2 distribution function. Means and standard deviations of row-centered log ratios VX of five nutrients (N, P, K, Ca, and Mg) and a filling value R, which included all nutrients not chemically analyzed. Preliminary CND norms are: VN*=0.174±0.095, VP*=–2.172±0.234, VK*=–0.007±0.267, VCa*=–0.022±0.146, VMg*=–1.710±0.132, and VR5*=3.728±0.084. These CND norms are associated with dry bean yields higher than 1.88 t ha–1, and are associated with the following foliar concentrations: 26.2 g N kg–1, 2.5 g P kg–1, 22.9 g K kg–1, 21.6 g Ca kg–1, and 4 g Mg kg–1. Cowpea plants growing in desert calcareous soils took up lower amounts of N, P, and K than those considered as optimum in a previous report. Six interactions were strongly indicated for cowpea through principal component analyses: positive for Ca–Mg, and negative for N–Ca, N–Mg, Ca–P, Mg–P, and K–P. Furthermore, two interactions were identified using simple correlations, negative N–P and positive K–Ca.  相似文献   

16.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

17.
The selective effect of DCMU on photosynthetic activity and growth rate was examined in several marine unicellular algae:Nannochloropsis sp. (Eustigmatohyceae),Dunaliella salina (Chlorophyceae)Isochrysis galbana (Prymnesiophyceae) andChaetoceros sp. (Bacillariophyceae). DCMU at 10–7 M caused an immediate decrease in the photosynthetic rate ofDunaliella andIsochrysis (about 50% inhibition), whereas 10–6 M imposed 80% inhibition in the photosynthetic rate ofChaetoceros. InNannochloropsis the rate was affected only when DCMU concentration exceeded 10–6M. Cellular growth rate of all studied algae was affected by DCMU in a similar manner to photosynthesis. The differential effect of DCMU was further examined in mixed cultures in whichNannochloropsis was cultivated together with an additional species simulating a contamination situation of aNannochloropsis culture. When DCMU was added at concentrations higher than 10–7 M, the growth of the competing algae significantly decreased, whileNannochloropsis maintained a relatively high growth rate. Consequently, after a growth period of 4 to 7 days a clear domination ofNannochloropsis was observed. These results demonstrate that DCMU and probably other herbicides of similar characteristics can be used effectively as a selective tool to suppress contaminating unicellular algae in open ponds in order to maintain a monoculture ofNannochloropsis.  相似文献   

18.
Affordable biological technology for the reclamation of wastes and water of the waste streams from intensive livestock units is important in a country short of water. This study tested the concept of reclamation of waste by Streptocephalus macrourus (Crustacea: Anostraca) from the effluent of a high rate algal pond processing livestock wastes. S. macrourus showed a growth efficiency of 39% to 74% when fed optimal rations and cultured at densities between 10 and 400 1–1. The maximum daily growth rates (0.15–0.21) approximate the growth rates of cladoceran or rotifer cultures managed for maximal biomass production. S. macrourus' ability to withstand crowding enabled the production from S. macrourus cultures (up to 91.8 mg dry mass l–1 d–1, or 1241 mg wet mass l–1 d–1) to exceed production recorded from cladoceran or rotifer cultures. Temperature influenced growth rate, with the highest growth rate occurring at 24 °C. The dilution rate of continuously fed cultures influenced growth rate, with the optimum dilution rate tested being 10 ml organism –1 d–1. Mass mortality occurred when organisms were held at a density of 4000 l–1. S. macrourus is able to convert algae grown on livestock waste efficiently into anostracan biomass, and is able to give a very high daily production.  相似文献   

19.
Kage  H.  Alt  C.  Stützel  H. 《Plant and Soil》2002,246(2):201-209
Data from field experiments carried out in three consecutive years under contrasting N supply and radiation environment altered by artificial shading were used to identify (a) the relationship between N concentration and organ size under conditions of unrestricted N supply and (b) critical levels of soil nitrate (Nmincrit), where nitrogen concentration of cauliflower organs begin to decline because of N limitations. The decline of N concentrations in cauliflower was analysed at different levels of morphological aggregation, i.e., the whole shoot level, the organ level (leaves, stem, and curd), and within different leaf groups within the canopy. Nmincrit values (0–60 cm soil depth) for total nitrogen concentration of cauliflower organs leaves, stem and curd were estimated at 85, 93 and 28 kg N ha–1, respectively. Within the canopy, Nmincrit values for total N of leaves increased from the top to the bottom from 44 to 188 kg N ha–1. Nmincrit values for protein N in leaves from different layers of the canopy were much lower at around 30 kg N ha–1, without a gradient within the canopy. It is discussed that these differences in Nmincrit values are most likely a consequence of N redistribution associated with nitrogen deficiency. The decline of average shoot nitrogen concentrations, [Nm] (%N DM), with shoot dry matter, W sh, (t ha–1) under conditions of optimal N supply was [Nm]= 4.84 (±0.071) W sh –0.089(± 0.011), r 2=0.67 (±S.E.). The reduction of radiation intensity by artificial shading (60% of control) had no significant influence on total nitrogen concentrations of leaves and only a small influence on protein nitrogen concentrations in lower layers of the canopy. The leaf nitrate nitrogen fraction of nitrogen, f nitr (–), within the canopy decreased linearly with increased average incident irradiance in different canopy layers (I av, W PAR m–2) (f Nitr. = 0.2456(±0.0188) – 0.0023(±0.0004)I av, r 2 = 0.67.  相似文献   

20.
The suspension feeding of Bithynia tentaculata was tested in laboratory experiments. The animals were fed in 1-1 aerated glass beakers, and filtration rates were calculated from changes in cell concentrations during the 6-h experiment. Temperature influenced the filtering rate, with minimum values of 5ml · ind–1 · h–1 at 5° C and maxima of 17.2 ml · ind–1 · h–1 at 18° C. Three food species of different size, motility and cell surface characteristics (Chlamydomonas reinhardii, Chlorella vulgaris and Chlorogonium elongatum) did not affect filtration rates. Suspension feeding increased with increasing food concentrations up to 12 nl · ml–1, above which feeding rate was kept constant by lowering the filtering rates. Even the smallest animals tested (<4 mm body length) were found to be feeding on suspended food at a rate of 2.7 ml · ind–1 · h–1, and increasing rates up to 8.4 ml were found in the 6–7 mm size class. All size classes of Bithynia showed a circannual fluctuation of their filtration rates. The ecological consequences of Bithynia's ability to switch between two feeding modes, grazing and suspension feeding, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号