首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To evaluate the pathogenic potential of Bacillus anthracis-secreted proteases distinct from lethal toxin, two neutral zinc metalloproteases were purified to apparent homogeneity from the culture supernatant of a non-virulent delta Ames strain (pXO1-, pXO2-). The first (designated Npr599) is a thermolysin-like enzyme highly homologous to bacillolysins from other Bacillus species. The second (designated InhA) is a homolog of the Bacillus thuringiensis immune inhibitor A. These proteases belong to the M4 and M6 families, respectively. Both enzymes digested various substrates, including extracellular matrix proteins, endogenous inhibitors, and coagulation proteins, with some differences in specificity. In addition, InhA accelerated urokinase-mediated plasminogen activation, suggesting that InhA acts as a modulator of plasmin in the host inflammatory system. Relevant to epithelial barrier function, Npr599 and InhA significantly enhanced syndecan-1 shedding from cultured normal murine mammary gland cells without affecting their viability through stimulation of the host cell ectodomain shedding mechanism. In addition, Npr599 and InhA directly cleaved recombinant syndecan-1 fused to glutathione S-transferase. Mass spectrometric analysis suggested that the cleavage sites of Npr599 and InhA are the Asp(39)-Asp(40) and Gly(48)-Thr(49) bonds, respectively. We propose that Npr599 and InhA from B. anthracis are multifunctional pathogenic factors that may contribute to anthrax pathology through direct degradation of host tissues, increases in barrier permeability, and/or modulation of host defenses.  相似文献   

2.
The cleavage of the A2 domain of von Willebrand factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET (fluorescence/F?rster resonance energy transfer) proteins, where variants of yellow fluorescent protein (Venus) and cyan fluorescent protein (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, and 77 amino acids) of this domain. These proteins were expressed in Escherichia coli in soluble form, and they exhibited FRET properties. Results show that the introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13-mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, on increasing urea concentrations. Although proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity and as a tool to study VWF-A2 conformation dynamics.  相似文献   

3.
The cleavage of the A2 domain of von Willebrand factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET (fluorescence/Förster resonance energy transfer) proteins, where variants of yellow fluorescent protein (Venus) and cyan fluorescent protein (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, and 77 amino acids) of this domain. These proteins were expressed in Escherichia coli in soluble form, and they exhibited FRET properties. Results show that the introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13-mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, on increasing urea concentrations. Although proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4 M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity and as a tool to study VWF-A2 conformation dynamics.  相似文献   

4.
ADAMTS13 is a metalloproteinase that cleaves von Willebrand factor (VWF) multimers. The metal ion dependence of ADAMTS13 activity was examined with multimeric VWF and a fluorescent peptide substrate based on Asp(1596)-Arg(1668) of the VWF A2 domain, FRETS-VWF73. ADAMTS13 activity in citrate-anticoagulated plasma was enhanced approximately 2-fold by zinc ions, approximately 3-fold by calcium ions, and approximately 6-fold by both ions, suggesting cooperative activation. Cleavage of VWF by recombinant ADAMTS13 was activated up to approximately 200-fold by zinc ions (K(D) (app) approximately 0.5 microM), calcium ions (K(D) (app) approximately 4.8 microM), and barium ions (K(D) (app) approximately 1.7 mM). Barium ions stimulated ADAMTS13 activity in citrated plasma but not in citrate-free plasma. Therefore, the stimulation by barium ions of ADAMTS13 in citrated plasma appears to reflect the release of chelated calcium and zinc ions from complexes with citrate. At optimal zinc and calcium concentrations, ADAMTS13 cleaved VWF with a K(m) (app) of 3.7 +/- 1.4 microg/ml (approximately 15 nM for VWF subunits), which is comparable with the plasma VWF concentration of 5-10 microg/ml. ADAMTS13 could cleave approximately 14% of VWF pretreated with guanidine HCl, suggesting that this substrate is heterogeneous in susceptibility to proteolysis. ADAMTS13 cleaved FRETS-VWF73 with a K(m) (app) of 3.2 +/- 1.1 microM, consistent with an approximately 200-fold decrease in affinity compared with VWF. ADAMTS13 cleaved VWF and FRETS-VWF73 with roughly comparable catalytic efficiency of 55 microM(-1) min(-1) and 18 microM(-1) min(-1), respectively. The striking preference of ADAMTS13 for VWF suggests that substrate recognition depends on structural features or exosites on multimeric VWF that are missing from FRETS-VWF73.  相似文献   

5.
A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force–dependent cleavage at a single Tyr–Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13–VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.  相似文献   

6.
Zhang J  Ma Z  Dong N  Liu F  Su J  Zhao Y  Shen F  Wang A  Ruan C 《PloS one》2011,6(7):e22157
The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.  相似文献   

7.
Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF.  相似文献   

8.
ADAMTS13 is the metalloprotease responsible for the proteolytic degradation of von Willebrand factor (VWF). A severe deficiency of this VWF-cleaving protease activity causes thrombotic thrombocytopenic purpura. This protease, comprising 1,427 amino acid residues, is composed of multiple domains, i.e., a preproregion, a metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 motif (Tsp1), a cysteine-rich domain, a spacer domain, seven Tsp1 repeats, and two CUB domains. We prepared one polyclonal and seven monoclonal antibodies recognizing distinct epitopes spanning the entire ADAMTS13 molecule. Of these antibodies, two of the monoclonal ones, which recognize the disintegrin-like and cysteine-rich/spacer domains, respectively, abolished the hydrolytic activity of ADAMTS13 toward both a synthetic substrate, FRETS-VWF73, and the natural substrate, VWF. In addition, these antibodies blocked the binding of ADAMTS13 to VWF. These results revealed that the region between the disintegrin-like and cysteine-rich/spacer domains interacts with VWF. Employing these established polyclonal and monoclonal antibodies, we examined the molecular species of ADAMTS13 circulating in the blood by immunoprecipitation followed by Western blot analysis, and estimated the plasma concentration of ADAMTS13 by enzyme-linked immunosorbent assay. These studies indicated that the major fraction of ADAMTS13 in blood plasma consisted of the full-length form. The concentration of ADAMTS13 in normal plasma was approximately 0.5-1 microg/ml.  相似文献   

9.
ADAMTS13, a metalloprotease, cleaves von Willebrand factor (VWF) in plasma to generate smaller, less thrombogenic fragments. The interaction of von Willebrand factor with specific ADAMTS13 domains was characterized with a binding assay employing von Willebrand factor immobilized on a plastic surface. ADAMTS13 binding was saturable and reversible. Equilibrium binding occurred within 2 h and the half-time for dissociation was approximately 4 h. Binding to von Willebrand factor was similar with either recombinant ADAMTS13 or normal plasma ADAMTS13; plasma from a patient who lacked ADAMTS13 activity showed no binding. The stoichiometry of binding was one ADAMTS13 per two von Willebrand factor monomers, and the K(d) was 14 nm. The ADAMTS13 metalloprotease and disintegrin domains did not bind VWF detectably. ADAMTS13 truncated after the first thrombospondin type 1 repeat bound VWF with a K(d) of 206 nm, whereas ADAMTS13 truncated after the spacer domain had a K(d) of 23 nm, which is comparable with that of full-length ADAMTS13. Truncation after the eighth thrombospondin type 1 repeat reduced the binding affinity by approximately 3-fold and truncation after the seventh thrombospondin type 1 repeat in addition to the CUB domains increased the affinity for von Willebrand factor by approximately 2-fold. Therefore, the spacer domain is required for ADAMTS13 binding to von Willebrand factor. The first thrombospondin repeat also affects binding, and the C-terminal thrombospondin type 1 and CUB domains of ADAMTS13 may modulate this interaction.  相似文献   

10.
The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself.  相似文献   

11.
Plasma von Willebrand factor (VWF) is a multimeric glycoprotein from endothelial cells and platelets that mediates adhesion of platelets to sites of vascular injury. In the shear force of flowing blood, however, only the very large VWF multimers are effective in capturing platelets. The multimeric size of VWF can be controlled by proteolysis at the Tyr(842)-Met(843) peptide bond by ADAMTS13 or cleavage of the disulfide bonds that hold VWF multimers together by thrombospondin-1 (TSP-1). The average multimer size of plasma VWF in TSP-1 null mice was significantly smaller than in wild type mice. In addition, the multimer size of VWF released from endothelium in vivo was reduced more rapidly in TSP-1 null mice than in wild type mice. TSP-1, like ADAMTS13, bound to the VWF A3 domain. TSP-1 in the wild type mice, therefore, may compete with ADAMTS13 for interaction with the A3 domain and slow the rate of VWF proteolysis. TSP-1 is stored in platelet alpha-granules and is released upon platelet activation. Significantly, platelet VWF multimer size was reduced upon lysis or activation of wild type murine platelets but not TSP-1 null platelets. This difference had functional consequences in that there was an increase in collagen- and VWF-mediated aggregation of the TSP-1 null platelets under both static and shear conditions. These findings indicate that TSP-1 influences plasma and platelet VWF multimeric size differently and may be more relevant for control of the VWF released from platelets.  相似文献   

12.
Von Willebrand factor (VWF) is a large, multimeric protein that regulates hemostasis by tethering platelets to the subendothelial matrix at sites of vascular damage. The procoagulant activity of plasma VWF correlates with the length of VWF multimers, which is proteolytically controlled by the metalloprotease ADAMTS13. To probe ADAMTS13 substrate specificity, we created phage display libraries containing randomly mutated residues of a minimal ADAMTS13 substrate fragment of VWF, termed VWF73. The libraries were screened for phage particles displaying VWF73 mutant peptides that were resistant to proteolysis by ADAMTS13. These peptides exhibited the greatest mutation frequency near the ADAMTS13 scissile residues. Kinetic assays using mutant and wild-type substrates demonstrated excellent agreement between rates of cleavage for mutant phage particles and the corresponding mutant peptides. Cleavage resistance of selected mutations was tested in vivo using hydrodynamic injection of corresponding full-length expression plasmids into VWF-deficient mice. These studies confirmed the resistance to cleavage resulting from select amino acid substitutions and uncovered evidence of alternate cleavage sites and recognition by other proteases in the circulation of ADAMTS13 deficient mice. Taken together, these studies demonstrate the key role of specific amino acids residues including P3-P2’ and P11’, for substrate specificity and emphasize the importance in flowing blood of other ADAMTS13–VWF exosite interactions outside of VWF73.  相似文献   

13.
ADAMTS13 is a plasma metalloproteinase that cleaves large multimeric forms of von Willebrand factor (VWF) to smaller, less adhesive forms. ADAMTS13 activity is reduced in systemic inflammatory syndromes, but the cause is unknown. Here, we examined whether neutrophil-derived oxidants can regulate ADAMTS13 activity. We exposed ADAMTS13 to hypochlorous acid (HOCl), produced by a myeloperoxidase-H2O2-Cl system, and determined its residual proteolytic activity using both a VWF A2 peptide substrate and multimeric plasma VWF. Treatment with 25 nm myeloperoxidase plus 50 μm H2O2 reduced ADAMTS13 activity by >85%. Using mass spectrometry, we demonstrated that Met249, Met331, and Met496 in important functional domains of ADAMTS13 were oxidized to methionine sulfoxide in an HOCl concentration-dependent manner. The loss of enzyme activity correlated with the extent of oxidation of these residues. These Met residues were also oxidized in ADAMTS13 exposed to activated human neutrophils, accompanied by reduced enzyme activity. ADAMTS13 treated with either neutrophil elastase or plasmin was inhibited to a lesser extent, especially in the presence of plasma. These observations suggest that oxidation could be an important mechanism for ADAMTS13 inactivation during inflammation and contribute to the prothrombotic tendency associated with inflammation.  相似文献   

14.
The large multimeric glycoprotein von Willebrand Factor (VWF) plays a pivotal adhesive role during primary hemostasis. VWF is cleaved by the protease ADAMTS13 as a down-regulatory mechanism to prevent excessive VWF-mediated platelet aggregation. For each VWF monomer, the ADAMTS13 cleavage site is located deeply buried inside the VWF A2 domain. External forces in vivo or denaturants in vitro trigger the unfolding of this domain, thereby leaving the cleavage site solvent-exposed and ready for cleavage. Mutations in the VWF A2 domain, facilitating the cleavage process, cause a distinct form of von Willebrand disease (VWD), VWD type 2A. In particular, the VWD type 2A Gly1629Glu mutation drastically accelerates the proteolytic cleavage activity, even in the absence of forces or denaturants. However, the effect of this mutation has not yet been quantified, in terms of kinetics or thermodynamics, nor has the underlying molecular mechanism been revealed. In this study, we addressed these questions by using fluorescence correlation spectroscopy, molecular dynamics simulations, and free energy calculations. The measured enzyme kinetics revealed a 20-fold increase in the cleavage rate for the Gly1629Glu mutant compared with the wild-type VWF. Cleavage was found cooperative with a cooperativity coefficient n = 2.3, suggesting that the mutant VWF gives access to multiple cleavage sites of the VWF multimer at the same time. According to our simulations and free energy calculations, the Gly1629Glu mutation causes structural perturbation in the A2 domain and thereby destabilizes the domain by ~10 kJ/mol, promoting its unfolding. Taken together, the enhanced proteolytic activity of Gly1629Glu can be readily explained by an increased availability of the ADAMTS13 cleavage site through A2-domain-fold thermodynamic destabilization. Our study puts forward the Gly1629Glu mutant as a very efficient enzyme substrate for ADAMTS13 activity assays.  相似文献   

15.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

16.
ADAMTS13 (A disintegrin and metalloprotease with thrombospondin type 1 repeats) is the specific von Willebrand factor (VWF)-cleaving protease. ADAMTS13 was partially purified from human plasma in 1996 and its gene was cloned in 2001. In case of vascular injury, multimeric VWF is the mediator of both platelet adhesion to the sub-endothelium and platelet aggregation within the microvessels at high shear rates of blood flow. ADAMTS13 regulates VWF adhesive capacity by reducing the size of VWF multimers. A severe functional deficiency of ADAMTS13 (activity lower than 10%) is associated with most cases of thrombotic thrombocytopenic purpura (TTP), a thrombotic microangiopathy characterized by the spontaneous formation, within the microcirculation, of VWF-rich platelet thrombi responsible for a mechanical hemolytic anemia, a consumption thrombocytopenia and a multivisceral ishemia. TTP is a rare disease (4 cases/10(6)/year) with a life-threatening prognosis in the absence of an appropriate treatment in emergency (plasmatherapy). In 90% of cases, TTP is acquired and related to the development of auto-antibodies to ADAMTS13. In the other cases, TTP is inherited via bi-allelic autosomic recessive mutations of ADAMTS13 gene (Upshaw-Schulman syndrome). A better characterization of ADAMTS13 structure/function combined to clinical trials led in TTP patients is crucial to evaluate the relevance of either a -plasma-purified or a -recombinant ADAMTS13 as a therapeutic agent.  相似文献   

17.

Background

ADAMTS13 is the physiological von Willebrand factor (VWF)-cleaving protease. The aim of this study was to examine ADAMTS13 expression in kidneys from ADAMTS13 wild-type (Adamts13+/+) and deficient (Adamts13−/−) mice and to investigate the expression pattern and bioactivity in human glomerular endothelial cells.

Methodology/Principal Findings

Immunohistochemistry was performed on kidney sections from ADAMTS13 wild-type and ADAMTS13-deficient mice. Phenotypic differences were examined by ultramorphology. ADAMTS13 expression in human glomerular endothelial cells and dermal microvascular endothelial cells was investigated by real-time PCR, flow cytometry, immunofluorescence and immunoblotting. VWF cleavage was demonstrated by multimer structure analysis and immunoblotting. ADAMTS13 was demonstrated in glomerular endothelial cells in Adamts13+/+ mice but no staining was visible in tissue from Adamts13−/− mice. Thickening of glomerular capillaries with platelet deposition on the vessel wall was detected in Adamts13−/− mice. ADAMTS13 mRNA and protein were detected in both human endothelial cells and the protease was secreted. ADAMTS13 activity was demonstrated in glomerular endothelial cells as cleavage of VWF.

Conclusions/Significance

Glomerular endothelial cells express and secrete ADAMTS13. The proteolytic activity could have a protective effect preventing deposition of platelets along capillary lumina under the conditions of high shear stress present in glomerular capillaries.  相似文献   

18.
ADAMTS13 controls the multimeric size of circulating von Willebrand factor (VWF) by cleaving the Tyr1605-Met1606 bond in theA2 domain. To examine substrate recognition, we expressed in bacteria and purified three A2 (VWF76-(1593-1668), VWF115-(1554-1668), VWFA2-(1473-1668)) and one A2-A3 (VWF115-A3-(1554-1874)) domain fragments. Using high pressure liquid chromatography analysis, the initial rates of VWF115 cleavage by ADAMTS13 at different substrate concentrations were determined, and from this the kinetic constants were derived (Km 1.61 microM; kcat 0.14 s(-1)), from which the specificity constant kcat/Km was calculated, 8.70 x 10(4) m(-1) s(-1). Similar values of the specificity constant were obtained for VWF76 and VWF115-A3. To identify residues important for recognition and proteolysis of VWF115, we introduced certain type 2A von Willebrand disease mutations by site-directed mutagenesis. Although most were cleaved normally, one (D1614G) was cleaved approximately 8-fold slower. Mutagenesis of additional charged residues predicted to be in close proximity to Asp1614 on the surface of the A2 domain (R1583A, D1587A, D1614A, E1615A, K1617A, E1638A, E1640A) revealed up to 13-fold reduction in kcat/Km for D1587A, D1614A, E1615A, and K1617A mutants. When introduced into the intact VWFA2 domain, proteolysis of the D1587A, D1614A, and E1615A mutants was also slowed, particularly in the presence of urea. Surface plasmon resonance demonstrated appreciable reduction in binding affinity between ADAMTS13 and VWF115 mutants (KD up to approximately 1.3 microM), compared with VWF115 (KD 20 nM). These results demonstrate an important role for Asp1614 and surrounding charged residues in the binding and cleavage of the VWFA2 domain by ADAMTS13.  相似文献   

19.
Hereditary thrombotic thrombocytopenic purpura (TTP) is an autosomal recessive thrombosis disorder, caused by loss-of-function mutations in ADAMTS13. Mutations in the CUB domains of ADAMTS13 are rare, and the exact mechanisms through which these mutations result in the development of TTP have not yet been fully elucidated. In this study, we identified two novel mutations in the CUB domains in a TTP family with an acceptor splice-site mutation (c.3569−1, G>A, intron 25) and a point missense mutation (c.3923, G>A, exon 28), resulting in a glycine to aspartic acid substitution (p.G1308D). In vitro splicing analysis revealed that the intronic mutation resulted in abnormal pre-mRNA splicing, and an in vitro expression assay revealed that the missense mutation significantly impaired ADAMTS13 secretion. Although both the patient and her brother displayed significantly reduced ADAMTS13 activity and increased levels of ultra-large VWF (ULVWF) multimers in plasma, only the female developed acute episodes of TTP. Our findings indicate the importance of the CUB domains for the protein stability and extracellular secretion of ADAMTS13.  相似文献   

20.
Platelet-decorated von Willebrand factor (VWF) strings anchored to the endothelial surface are rapidly cleaved by ADAMTS13. Individual VWF string characteristics such as number, location, and auxiliary features of the ADAMTS13 cleavage sites were explored here using imaging and computing software. By following changes in VWF string length, we demonstrated that VWF strings are cleaved multiple times, successively shortening string length in the function of time and generating fragments ranging in size from 5 to over 100 μm. These are larger than generally observed in normal plasma, indicating that further proteolysis takes place in circulation. Interestingly, in 89% of all cleavage events, VWF strings elongate precisely at the cleavage site before ADAMTS13 proteolysis. These local elongations are a general characteristic of VWF strings, independent of the presence of ADAMTS13. Furthermore, large elongations, ranging in size from 1.4 to 40 μm, occur at different sites in space and time. In conclusion, ADAMTS13-mediated proteolysis of VWF strings under flow is preceded by large elongations of the string at the cleavage site. These elongations may lead to the simultaneous exposure of many exosites, thereby facilitating ADAMTS13-mediated cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号