首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Oxidative stress has been implicated in the pathogenesis of inflammatory diseases of airways. Here we show that oxidative stress causes ligand-independent activation of epidermal growth factor receptors (EGFR) and subsequent activation of mitogen-activated protein kinase kinase (MEK)-p44/42 mitogen-activated protein kinase (p44/42mapk), resulting in mucin synthesis in NCI-H292 cells. Exogenous hydrogen peroxide and neutrophils activated by IL-8, FMLP, or TNF-alpha increased EGFR tyrosine phosphorylation and subsequent activation of p44/42mapk and up-regulated the expression of MUC5AC at both mRNA and protein levels in NCI-H292 cells. These effects were blocked by selective EGFR tyrosine kinase inhibitors (AG1478, BIBX1522) and by a selective MEK inhibitor (PD98059), whereas a selective platelet-derived growth factor receptor tyrosine kinase inhibitor (AG1295), a selective p38 MAPK inhibitor (SB203580), and a negative compound of tyrosine kinase inhibitors (A1) were without effect. Neutrophil supernatant-induced EGFR tyrosine phosphorylation, activation of p44/42mapk, and MUC5AC synthesis were inhibited by antioxidants (N-acetyl-cysteine, DMSO, dimethyl thiourea, or superoxide dismutase); neutralizing Abs to EGFR ligands (EGF and TGF-alpha) were without effect, and no TGF-alpha protein was found in the neutrophil supernatant. In contrast, the EGFR ligand, TGF-alpha, increased EGFR tyrosine phosphorylation, activation of p44/42mapk, and subsequent MUC5AC synthesis, but these effects were not inhibited by antioxidants. These results implicate oxidative stress in stimulating mucin synthesis in airways and provide new therapeutic approaches in airway hypersecretory diseases.  相似文献   

3.
Mammalian cells respond to environmental stress by activating a variety of protein kinases critical for cellular signal transmission, such as the epidermal growth factor receptor (EGFR) tyrosine kinase and different members of the mitogen-activated protein kinase (MAPK) family. EGFR activation by stress stimuli was previously thought to occur independently of stimulation by extracellular ligands. Here, we provide evidence that osmotic and oxidative stresses induce a metalloprotease activity leading to cell surface cleavage of pro-heparin-binding EGF (pro-HB-EGF) and subsequent EGFR activation. This ligand-dependent EGFR signal resulted from stress-induced activation of the MAPK p38 in human carcinoma cells and was mediated by the metalloproteases ADAM9, -10, and -17. Furthermore, stress-induced EGFR activation induced downstream signaling through the MAPKs extracellular signal-regulated kinases 1 and 2 and JNK. Interestingly, apoptosis induced by treatment of tumor cells with doxorubicin was strongly enhanced by blocking HB-EGF function. Together, our data provide novel insights into the mammalian stress response, suggesting a broad mechanistic relevance of a p38-ADAM-HB-EGF-EGFR-dependent pathway and its potential significance for tumor cells in evasion of chemotherapeutic agent-induced apoptosis.  相似文献   

4.
Transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase kinase kinase has been shown to be activated by cellular stresses including tumor necrosis factor-alpha (TNF-alpha). Here, we characterized the molecular mechanisms of cellular stress-induced TAK1 activation, focusing mainly on the phosphorylation of TAK1 at Thr-187 and Ser-192 in the activation loop. Thr-187 and Ser-192 are conserved among species from Caenorhabditis elegans to human, and their replacement with Ala resulted in inactivation of TAK1. Immunoblotting with a novel phospho-TAK1 antibody revealed that TNF-alpha significantly induced the phosphorylation of endogenous TAK1 at Thr-187, and subsequently the phosphorylated forms of TAK1 rapidly disappeared. Intermolecular autophosphorylation of Thr-187 was essential for TAK1 activation. RNA interference and overexpression experiments demonstrated that TAK1-binding protein TAB1 and TAB2 were involved in the phosphorylation of TAK1, but they regulated TAK1 phosphorylation differentially. Furthermore, SB203580 and p38alpha small interfering RNA enhanced TNF-alpha-induced Thr-187 phosphorylation as well as TAK1 kinase activity, indicating that the phosphorylation is affected by p38alpha/TAB1/TAB2-mediated feedback control of TAK1. These results indicate critical roles of Thr-187 phosphorylation in the stress-induced rapid and transient activation of TAK1 in a signaling complex containing TAB1 and TAB2.  相似文献   

5.
Previous studies from this laboratory have demonstrated a critical role of cytosolic phospholipase A2 (cPLA2) and arachidonic acid in angiotensin II (Ang II) AT2 receptor-mediated signal transduction in renal epithelium. In primary proximal tubular epithelial cells exposed to hydrogen peroxide (H2O2), both the selective cPLA2 inhibitors and the cPLA2 antisense oligonucleotides significantly attenuated H2O2-induced arachidonic acid liberation and activation of p38(SAPK), ERK1/2, and Akt1. This H2O2-induced kinase activation was significantly attenuated by a Src kinase inhibitor PP2, or by transient transfection of carboxyl-terminal Src kinase (CSK) that maintained Src in the dormant form. Under basal conditions, Src coimmunoprecipitated with epidermal growth factor receptor (EGFR), while H2O2 increased EGFR phosphorylation in the complex. We observed that inhibition of EGFR kinase activity with AG1478 significantly attenuated H2O2-induced p38(SAPK) and ERK1/2 activation, but did not inhibit Akt1 activation. Furthermore, it seems that p38(SAPK) is upstream of ERK1/2 and Akt1, since a p38(SAPK) inhibitor SB203580 significantly blocked H2O2-induced activation of ERK1/2 and Akt1. Interestingly, overexpression of the dominant-negative p38(SAPK) isoform alpha inhibited ERK1/2 but not Akt1 activation. Our observations demonstrate that in these nontransformed cells, activation of cPLA2 is a converging point for oxidative stress and Ang II, which share common downstream signaling mechanisms including Src and EGFR. In addition, p38(SAPK) provides a positive input to both growth and antiapoptotic signaling pathways induced by acute oxidative stress.  相似文献   

6.
Frey MR  Dise RS  Edelblum KL  Polk DB 《The EMBO journal》2006,25(24):5683-5692
Internalization and proteolytic degradation of epidermal growth factor (EGF) receptor (R) following ligand binding is an important mechanism for regulating EGF-stimulated signals. Using pharmacological and RNA interference inhibition of p38 mitogen-activated protein kinase, we show that p38 is required for efficient EGF-induced EGFR destruction but not internalization. In the absence of p38 activity, EGF fails to stimulate the ubiquitin ligase Cbl or ubiquitinylation of EGFR, and internalized EGFR accumulates in intracellular vesicles containing caveolin-1. These effects are accompanied by loss of EGFR phosphorylation on Y1045, a phosphorylation site required for Cbl activation. Furthermore, similar to cells treated with p38 inhibitors, intestinal epithelial cells expressing Y1045F EGFR mutants show increased proliferation but not migration in response to EGF, thus uncoupling these biological responses. Together these data position p38 as a modulator of ligand-stimulated EGFR processing and demonstrate that this processing has a profound impact on the cellular outcome of EGFR signaling.  相似文献   

7.
Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions.  相似文献   

8.
Nitric oxide (NO*) strongly inhibits the proliferation of human A431 tumour cells. It also inhibits tyrosine phosphorylation of a 170-kDa band corresponding to the epidermal growth factor receptor (EGFR) and induces the phosphorylation at tyrosine residue(s) of a 58-kDa protein which we have denoted NOIPP-58 (nitric oxide-induced 58-kDa phosphoprotein). The NO*-induced phosphorylation of NOIPP-58 is strictly dependent on the presence of EGF. Phosphorylation of NOIPP-58 and inhibition of the phosphorylation of the band corresponding to EGFR are both cGMP-independent processes. We also demonstrate that the p38 mitogen-activated protein kinase (p38MAPK) pathway is activated by NO* in the absence and presence of EGF, whereas the activity of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and the c-Jun N-terminal kinase 1/2 (JNK1/2) pathways are not significantly affected or are slightly decreased, respectively, on addition of this agent. Moreover, we show that the p38MAPK inhibitor, SB202190, induces rapid vanadate/peroxovanadate-sensitive dephosphorylation of prephosphorylated EGFR and NOIPP-58. We propose that the dephosphorylation of both NOIPP-58 and EGFR are mediated by a p38MAPK-controlled phosphotyrosine-protein phosphatase (PYPP). Activation of the p38MAPK pathway during nitrosative stress probably prevents the operation of this PYPP, allowing NOIPP-58, and in part EGFR, to remain phosphorylated and therefore capable of generating signalling events.  相似文献   

9.
Imatinib mesylate is a tyrosine kinase inhibitor of the ABL, platelet-derived growth factor receptor (PDGFR), and c-kit kinases. Inhibition of BCR-ABL and c-kit accounts for its clinical activity in leukemia and sarcoma, respectively. In this report, we describe other cellular targets for imatinib. Treatment of head and neck squamous carcinoma cells with clinically relevant concentrations of imatinib-induced changes in cell morphology and growth similar to changes associated with epidermal growth factor receptor (EGFR) activation. Imatinib-induced changes were blocked with the EGFR antagonist cetuximab, which suggested direct involvement of EGFR in this process. Western blot analysis of cells incubated with imatinib demonstrated activation of EGFR and downstream signaling that was reduced by inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase 1 (MEK1) and EGFR, but not Her2/ErbB2. An in vitro kinase assay showed that imatinib did not directly affect EGFR kinase activity, suggesting involvement of EGFR-activating molecules. Inhibitors and neutralizing antibodies against heparin-binding epidermal growth factor-like growth factor (HB-EGF), and to a lesser extent transforming growth factor-alpha, reduced imatinib-mediated mitogen activated protein kinase (MAPK) activation. Imatinib stimulated the rapid release of soluble HB-EGF and the subsequent induction of membrane-bound HB-EGF, which correlated with biphasic MAPK activation. Together, these results suggested that imatinib affects EGFR activation and signaling pathways through rapid release and increased expression of endogenous EGFR-activating ligands. Although, imatinib primarily inhibits tyrosine kinases, it also stimulates the activity of EGFR tyrosine kinase in head and neck squamous tumors. This finding demonstrates the need for careful use of this drug in cancer patients.  相似文献   

10.
Activation of the epidermal growth factor receptor (EGFR) has been shown to occur by ligand-dependent and ligand-independent mechanisms. Different molecular mechanisms have been found to be responsible for ligand-independent receptor transactivation. Here, we show that hyperosmolar concentrations of sorbitol activate the EGFR in human keratinocytes. Experiments using specific inhibitors of EGFR phosphorylation show that the increased amount of activated receptors is the result of a decreased rate of dephosphorylation. Furthermore, sorbitol treatment results in a strong activation of stress kinase p38. Treatment of the cells with SB203580, a known inhibitor of p38 alpha and beta kinases, results in impairment of receptor activation, indicating that the stress kinase is involved in receptor activation modulation. This is further reinforced by experiments showing that addition of Toxin B, known to be an inhibitor of the small Rho GTPases rac1, cdc42, and Rho A/B, to the cells results in a strong induction of EGFR activation. Our results point, therefore, to a mechanism by which osmotic shock activates EGFR through the small Rho GTPases-p38 stress kinase pathway.  相似文献   

11.
The clinical course of mycobacterial infections is linked to the capacity of pathogenic strains to modulate the initial antimycobacterial response of the macrophage. To elucidate some of the mechanisms involved, we studied early signal transduction events leading to cytokine formation by human monocyte-derived macrophages (MDM) in response to clinical isolates of Mycobacterium avium. TNF-alpha production induced by M. avium was inhibited by anti-CD14 mAbs, but not by Abs against the macrophage mannose receptor. Analysis of mitogen-activated protein (MAP) kinase activation (extracellular signal-regulated kinase 1/2, p38, and c-Jun NH(2)-terminal kinase) showed a rapid phosphorylation of all three subfamilies in response to M. avium, which was inhibited by anti-CD14 Abs. Using highly specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that activation of the extracellular signal-regulated kinase pathway, but not of p38, was essential for the M. avium-induced TNF-alpha formation. In contrast, IL-10 production was abrogated by the p38 inhibitor, but not by the MAP kinase kinase-1 inhibitor. In conclusion, M. avium-induced secretion of TNF-alpha and IL-10 by human macrophages is differentially regulated at the level of MAP kinase activity.  相似文献   

12.
In the renal medulla, cyclooxygenase (COX)-2 is induced by osmotic stress as present in this kidney region during antidiuresis. Increasing evidence suggests that EGF receptor (EGFR) signaling is involved in this process. The aim of the present study was to examine the mechanisms responsible for COX-2 expression and PGE(2) production during hypertonic conditions and to identify potential autocrine/paracrine EGFR ligands. Immunohistochemisty and Western blot analysis revealed abundant expression of the pro-EGFR ligand pro-transforming growth factor (TGF)-alpha in renal medullary cells in vivo and in cultured Madin-Darby canine kidney cells. In Madin-Darby canine kidney cells, hypertonicity rapidly increased TNF-alpha converting enzyme (TACE)-dependent ectodomain shedding of pro-TGF-alpha; phosphorylation of EGFR, p38, and ERK1/2; expression of COX-2; and production of PGE(2). Conversely, TACE inhibition prevented TGF-alpha release; EGFR, p38, and ERK1/2 activation; and COX-2 expression. Furthermore, cell survival was reduced substantially, a response that could be reversed by the addition of PGE(2). Simultaneous addition of recombinant TGF-alpha during TACE inhibition restored EGFR and MAPK phosphorylation, COX-2 expression, PGE(2) production, and cell survival during osmotic stress. These results indicate that hypertonicity induces TACE-mediated ectodomain shedding of pro-TGF-alpha, which subsequently activates COX-2 expression in an autocrine/paracrine fashion, via EGFR and MAPKs. We conclude that tonicity-induced TGF-alpha release is required for COX-2 expression, PGE(2) synthesis, and survival of renal medullary cells during osmotic stress.  相似文献   

13.
The epidermal growth factor receptor (EGFR) is an integral regulator of many cellular functions. EGFR also acts as a central conduit for extracellular signals involving direct activation of the receptor by EGFR ligands or indirect activation by G protein-coupled receptor (GPCR)-stimulated transactivation of the EGFR. We have previously shown that EGFR negatively regulates epithelial chloride secretion as a result of transforming growth factor-alpha-mediated EGFR transactivation in response to muscarinic GPCR activation. Here we show that direct activation of the EGFR by EGFR ligands produces a different pattern of EGFR tyrosine phosphorylation and downstream phosphatidylinositol 3-kinase recruitment than GPCR-stimulated transactivation of the EGFR occurring via paracrine EGFR ligand release. Moreover, we demonstrate that this differential signaling and its consequences depend on protein-tyrosine phosphatase 1B activity. Thus protein-tyrosine phosphatase 1B governs differential recruitment of signaling pathways involved in EGFR regulation of epithelial ion transport. Our findings furthermore establish how divergent signaling outcomes can arise from the activation of a single receptor.  相似文献   

14.
Environmental stressors have been recently shown to activate intracellular mitogen-activated protein (MAP) kinases, such as p38 MAP kinase, leading to changes in cellular functioning. However, little is known about the downstream elements in these signaling cascades. In this study, we show that caveolin-1 is phosphorylated on tyrosine 14 in NIH 3T3 cells after stimulation with a variety of cellular stressors (i.e. high osmolarity, H2O2, and UV light). To detect this phosphorylation event, we employed a phosphospecific monoclonal antibody probe that recognizes only tyrosine 14-phosphorylated caveolin-1. Since p38 MAP kinase and c-Src have been previously implicated in the stress response, we next assessed their role in the tyrosine phosphorylation of caveolin-1. Interestingly, we show that the p38 inhibitor (SB203580) and a dominant-negative mutant of c-Src (SRC-RF) both block the stress-induced tyrosine phosphorylation of caveolin-1 (Tyr(P)(14)). In contrast, inhibition of the p42/44 MAP kinase cascade did not affect the tyrosine phosphorylation of caveolin-1. These results indicate that extracellular stressors can induce caveolin-1 tyrosine phosphorylation through the activation of well established upstream elements, such as p38 MAP kinase and c-Src kinase. However, heat shock did not promote the tyrosine phosphorylation of caveolin-1 and did not activate p38 MAP kinase. Finally, we show that after hyperosmotic shock, tyrosine-phosphorylated caveolin-1 is localized near focal adhesions, the major sites of tyrosine kinase signaling. In accordance with this localization, disruption of the actin cytoskeleton dramatically potentiates the tyrosine phosphorylation of caveolin-1. Taken together, our results clearly define a novel signaling pathway, involving p38 MAP kinase activation and caveolin-1 (Tyr(P)(14)). Thus, tyrosine phosphorylation of caveolin-1 may represent an important downstream element in the signal transduction cascades activated by cellular stress.  相似文献   

15.
Phosphorylation of epidermal growth factor receptor (EGFR) on tyrosine 845 by c-Src has been shown to be important for cell proliferation and migration in several model systems. This cross talk between EGFR and Src family kinases (SFKs) is one mechanism for resistance to EGFR inhibitors both in cell models and in the clinic. Here, we show that phosphorylation of tyrosine 845 on EGFR is required for proliferation and transformation using several cell models of breast cancer. Overexpression of EGFR-Y845F or treating cells with the SFK inhibitor dasatinib abrogated tyrosine 845 phosphorylation, yet had little to no effect on other EGFR phosphorylation sites or EGFR kinase activity. Abrogation of Y845 phosphorylation inhibited cell proliferation and transformation, even though extracellular signal-regulated kinase (ERK) and Akt remained active under these conditions. Importantly, cotransfection of mitogen-activated protein kinase (MAPK) kinase 3 and p38 MAPK restored cell proliferation in the absence of EGFR tyrosine 845 phosphorylation. Taken together, these data demonstrate a novel role for p38 MAPK signaling downstream of EGFR tyrosine 845 phosphorylation in the regulation of breast cancer cell proliferation and transformation and implicate SFK inhibitors as a potential therapeutic mechanism for overcoming EGFR tyrosine kinase inhibitor resistance in breast cancer.  相似文献   

16.
Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.  相似文献   

17.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

18.
Transforming growth factor-beta stimulates the production of the extracellular matrix, whereas TNF-alpha has antifibrotic activity. Understanding the molecular mechanism underlying the antagonistic activities of TNF-alpha against TGF-beta is critical in the context of tissue repair and maintenance of tissue homeostasis. In the present study, we demonstrated a novel mechanism by which TNF-alpha blocks TGF-beta-induced gene and signaling pathways in human dermal fibroblasts. We showed that TNF-alpha prevents TGF-beta-induced gene trans activation, such as alpha2(I) collagen or tissue inhibitor of metalloproteinases 1, and TGF-beta signaling pathways, such as Smad3, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases, without inducing levels of inhibitory Smad7 in human dermal fibroblasts. TNF-alpha down-regulates the expression of type II TGF-beta receptor (TbetaRII) proteins, but not type I TGF-beta receptor (TbetaRI), in human dermal fibroblasts. However, neither TbetaRII mRNA nor TbetaRII promoter activity was decreased by TNF-alpha. TNF-alpha-mediated decrease of TbetaRII protein expression was not inhibited by the treatment of fibroblasts with either a selective inhibitor of I-kappaB-alpha phosphorylation, BAY 11-7082, or a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059. Calpain inhibitor I (ALLN), a protease inhibitor, inhibits TNF-alpha-mediated down-regulation of TbetaRII. We found that TNF-alpha triggered down-regulation of TbetaRII, leading to desensitization of human dermal fibroblasts toward TGF-beta. Furthermore, these events seemed to cause a dramatic down-regulation of alpha2(I) collagen and tissue inhibitor of metalloproteinases 1 in systemic sclerosis fibroblasts. These results indicated that TNF-alpha impaired the response of the cells to TGF-beta by regulating the turnover of TbetaRII.  相似文献   

19.
Ultraviolet radiation (UVR)-induced receptor phosphorylation is increasingly recognized as a widely occurring phenomenon. However, the mechanisms, mediators, and sequence of events involved in this process remain ill-defined. We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B radiation (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinase 1 and 2 (ERK1/2), and p38 signaling pathways via reactive oxygen species. Here we demonstrate that UVB exposure increased intra- and extracellular H2O2 production rapidly in a time-dependent manner. An EGFR-specific monoclonal antibody abrogated EGFR autophosphorylation and markedly decreased the phosphorylation of ERK1/2 whereas p38 activation was unaffected. Overexpression of catalase strongly inhibited UVB-induced EGFR/ERK1/2 pathway activation. These findings establish the sequence of events after UVB irradiation: (i) H2O2 generation, (ii) EGFR phosphorylation, and (iii) ERK activation. Our results identify UVB-induced H2O2 as a second messenger that is required for EGFR and dependent downstream signaling pathways activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号