首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity which is specifically induced by ethanol. The promoter of this gene was used for the expression of heterologous proteins in K. lactis, a very promising organism which can be used as an alternative host to Saccharomyces cerevisiae due to its good secretory properties. In this paper we report the ethanol-driven expression in K. lactis of the bacterial β-glucuronidase and of the human serum albumin (HSA) genes under the control of the KlADH4 promoter. In particular, we studied the extracellular production of recombinant HSA (rHSA) with integrative and replicative vectors and obtained a significant increase in the amount of the protein with multicopy vectors, showing that no limitation of KlADH4 trans-acting factors occurred in the cells. By deletion analysis of the promoter, we identified an element (UASE) which is sufficient for the induction of KlADH4 by ethanol and, when inserted in the respective promoters, allows ethanol-dependent activation of other yeast genes, such as PGK and LAC4. We also analyzed the effect of medium composition on cell growth and protein secretion. A clear improvement in the production of the recombinant protein was achieved by shifting from batch cultures (0.3 g/liter) to fed-batch cultures (1 g/liter) with ethanol as the preferred carbon source.  相似文献   

4.
5.
Alternative splicing of pre-mRNA is a commonly used mechanism to regulate gene expression in higher eukaryotes. However, with the exception of regulated cascades in Drosophila, the cis-acting elements and the trans-acting factors that control tissue- and/or developmentally regulated splicing remain largely unidentified. Cis-acting elements that control smooth muscle-specific repression of exon 3 of alpha-tropomyosin (alpha-TM) have been identified recently and consist of two regions that flank this exon. Deletion of either element causes misregulated splicing of alpha-TM in transfected smooth muscle cells. In experiments designed to characterize essential sequences within each element and the factors that interact with these sequences, we have identified two overlapping sequences within the downstream regulatory element (DRE) that are identical to binding sites for polypyrimidine tract binding protein (PTB) that were identified using iterative selection techniques. Mutation of these sites caused aberrant splicing regulation in transfected smooth muscle cells. In addition, sequences identical to high-affinity PTB binding sites were also detected upstream of exon 3 and mutation of these sites also resulted in misregulation of splicing in vivo, suggesting that PTB binding to specific sequences flanking exon 3 is responsible, in part, for the repression of exon 3. Consistent with this hypothesis, UV crosslinking and equilibrium binding assays confirm that the same mutations that cause misregulated splicing also disrupt PTB binding to RNA.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号