首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The food-borne pathogen Listeria monocytogenes is notable for its ability to grow under osmotic stress and at low temperatures. It is known to accumulate the compatible solutes glycine betaine and carnitine from the medium in response to osmotic or chill stress, and this accumulation confers tolerance to these stresses. Two permeases that transport glycine betaine have been identified, both of which are activated by hyperosmotic stress and one of which is activated by low temperature. An osmotically activated transporter for carnitine, OpuC, has also been identified. We have isolated a Tn917-LTV3 insertional mutant that could not be rescued from hyperosmotic stress by exogenous carnitine. The mutant, LTS4a, grew indistinguishably from a control strain (DP-L1044) in the absence of stress or in the absence of carnitine, but DP-L1044 grew substantially faster under osmotic or chill stress in the presence of carnitine. LTS4a was found to be strongly impaired in KCl-activated as well as chill-activated carnitine transport. 13C nuclear magnetic resonance spectroscopy of perchloric acid extracts showed that accumulation of carnitine by LTS4a was negligible under all conditions tested. Direct sequencing of LTS4a genomic DNA with a primer based on Tn917-LTV3 yielded a 487-bp sequence, which allowed us to determine that the opuC operon had been interrupted by the transposon. It can be concluded that opuC encodes a carnitine transporter that can be activated by either hyperosmotic stress or chill and that the transport system plays a significant role in the tolerance of L. monocytogenes to both forms of environmental stress.  相似文献   

3.
4.
5.
6.
Mutation of sigB impairs the ability of Listeria monocytogenes to grow in sublethal levels, and to survive in lethal concentrations, of the bacteriocins nisin and lacticin 3147 and the antibiotics ampicillin and penicillin G. SigB may therefore represent an attractive target for the development of new control and treatment strategies for this important pathogen.  相似文献   

7.
8.
9.
Cold shock at 0 to 15 degrees C for 1 to 3 h increased the thermal sensitivity of Listeria monocytogenes. In a model broth system, thermal death time at 60 degrees C was reduced by up to 45% after L. monocytogenes Scott A was cold shocked for 3 h. The duration of the cold shock affected thermal tolerance more than did the magnitude of the temperature downshift. The Z values were 8.8 degrees C for controls and 7.7 degrees C for cold-shocked cells. The D values of cold-shocked cells did not return to control levels after incubation for 3 h at 28 degrees C followed by heating at 60 degrees C. Nine L. monocytogenes strains that were cold shocked for 3 h exhibited D(60) values that were reduced by 13 to 37%. The D-value reduction was greatest in cold-shocked stationary-phase cells compared to cells from cultures in either the lag or exponential phases of growth. In addition, cold-shocked cells were more likely to be inactivated by a given heat treatment than nonshocked cells, which were more likely to experience sublethal injury. The D values of chloramphenicol-treated control cells and chloramphenicol-treated cold-shocked cells were no different from those of untreated cold-shocked cells, suggesting that cold shock suppresses synthesis of proteins responsible for heat protection. In related experiments, the D values of L. monocytogenes Scott A were decreased 25% on frankfurter skins and 15% in ultra-high temperature milk if the inoculated products were first cold shocked. Induction of increased thermal sensitivity in L. monocytogenes by thermal flux shows potential to become a practical and efficacious preventative control method.  相似文献   

10.
Outbreaks of listeriosis and febrile gastroenteritis have been linked to produce contamination by Listeria monocytogenes. In order to begin to understand the physiology of the organism in a produce habitat, the ability of L. monocytogenes to attach to freshly cut radish tissue was examined. All strains tested had the capacity to attach sufficiently well such that they could not be removed during washing of the radish slices. A screen was developed to identify Tn917-LTV3 mutants that were defective in attachment to radish tissue, and three were characterized. Two of the three mutations were in genes with unknown functions. Both of the unknown genes mapped to a region predicted to contain genes necessary for flagellar export; however, only one of the two insertions caused a motility defect. The third insertion was found to be in an operon encoding a phosphoenolpyruvate-sugar phosphotransferase system. All three mutants were defective in attachment when tested at 30 degrees C; the motility mutant had the most severe phenotype. However, not all of the mutants were defective when tested at other temperatures. These results indicate that L. monocytogenes may use different attachment factors at different temperatures and that temperature should be considered an important variable in studies of the molecular mechanisms of Listeria fitness in complex environments.  相似文献   

11.
12.
The concentrations of intracellular solutes in Listeria monocytogenes were examined in cells grown at various concentrations of NaCl. At 5% NaCl, cells contained elevated concentrations of potassium and glycine betaine compared with concentrations in cells grown without NaCl. At 7.5% NaCl, cells contained increased concentrations of K+, glycine betaine, glycine, alanine, and proline. Only glycine betaine, choline, or glycine promoted growth on a solidified defined medium containing 4% NaCl; there was no growth at higher concentrations of NaCl in the defined medium.  相似文献   

13.
L.-J. CHEN, J. WANG AND R.E. LEVIN. 1996. Growth in the presence of 100 ppm benzylpenicillin (BP) for 2 h failed to result in a detectable reduction in cfu. Cells grown and incubated for 24 h in 0, 1, 10 and 100 ppm BP underwent reductions in cfu of 0%, 0%, 90% and 99% respectively of maximum cfu values.  相似文献   

14.
The concentrations of intracellular solutes in Listeria monocytogenes were examined in cells grown at various concentrations of NaCl. At 5% NaCl, cells contained elevated concentrations of potassium and glycine betaine compared with concentrations in cells grown without NaCl. At 7.5% NaCl, cells contained increased concentrations of K+, glycine betaine, glycine, alanine, and proline. Only glycine betaine, choline, or glycine promoted growth on a solidified defined medium containing 4% NaCl; there was no growth at higher concentrations of NaCl in the defined medium.  相似文献   

15.
Betaine is the main compatible solute of halophilic eubacteria.   总被引:13,自引:11,他引:13       下载免费PDF全文
A number of moderately halophilic bacteria of diverse taxonomic groups have been studied to determine the intracellular concentrations of organic compounds at various salt concentrations. Betaine was accumulated in all of these organisms in proportion to the salinity of the medium, suggesting that this compound plays a major role in osmoregulation.  相似文献   

16.
Mutational Analysis of the Role of HPr in Listeria monocytogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

17.
AIMS: To establish the relative importance of the osmo- and cryoprotective compounds glycine betaine and carnitine, and their transporters, for listerial growth and survival, in foods and during infection. METHODS AND RESULTS: A set of Listeria monocytogenes mutants with single, double and triple mutations in the genes encoding the principal betaine and carnitine uptake systems (gbu, betL and opuC, respectively) was used to determine the specific contribution of each transporter to listerial growth and survival. Food models were chosen to represent high-risk foods of plant and animal origin i.e. coleslaw and frankfurters, which have previously been linked to major human outbreaks of listeriosis. BALB/c mice were used as an in vivo model of infection. Interestingly, while betaine appeared to confer most protection in foods, the hierarchy of transporter importance differs depending on the food type: Gbu>BetL>OpuC for coleslaw, as opposed to Gbu>OpuC>BetL in frankfurters. By contrast in the animal model, OpuC and thus carnitine, appears to play the dominant role, with the remaining systems contributing little to the infection process. CONCLUSIONS: This study demonstrates that the individual contribution of each system appears dependent on the immediate environment. In foods Gbu appears to play the dominant role, while during infection OpuC is most important. SIGNIFICANCE AND IMPACT OF THE STUDY: It is envisaged that this information may ultimately facilitate the design of effective control measures specifically targeting this pathogen in foods and during infection.  相似文献   

18.
van der Veen S  Abee T 《PloS one》2011,6(12):e28590
The food-borne pathogen Listeria monocytogenes is a gram-positive microaerophilic facultative anaerobic rod and the causative agent of the devastating disease listeriosis. L. monocytogenes is able to form biofilms in the food processing environment. Since biofilms are generally hard to eradicate, they can function as a source for food contamination. In several occasions biofilms have been identified as a source for genetic variability, which potentially can result in adaptation of strains to food processing or clinical conditions. However, nothing is known about mutagenesis in L. monocytogenes biofilms and the possible mechanisms involved. In this study, we showed that the generation of genetic variants was specifically induced in continuous-flow biofilms of L. monocytogenes, but not in static biofilms. Using specific dyes and radical inhibitors, we showed that the formation of superoxide and hydroxyl radicals was induced in continuous-flow biofilms, which was accompanied with in an increase in DNA damage. Promoter reporter studies showed that recA, which is an important component in DNA repair and the activator of the SOS response, is activated in continuous-flow biofilms and that activation was dependent on radical-induced DNA damage. Furthermore, continuous-flow biofilm experiments using an in-frame recA deletion mutant verified that RecA is required for induced generation of genetic variants. Therefore, we can conclude that generation of genetic variants in L. monocytogenes continuous-flow biofilms results from radical-induced DNA damage and RecA-mediated mutagenic repair of the damaged DNA.  相似文献   

19.
20.
Listeria monocytogenes transports glucose by proton motive force-mediated and phosphoenolpyruvate-dependent phosphotransferase systems (PEP-dependent PTS). Inhibition of both systems by nisin, pediocin JD and leuconosin S is reported here for four strains of L. monocytogenes . Intracellular and extracellular adenosine triphosphate (ATP) and extracellular inorganic phosphate were measured in energized L. monocytogenes Scott A cells to determine whether inhibition of the PEP-dependent PTS might occur as a result of bacteriocin-induced leakage of intracellular components. Addition of nisin resulted in a decrease in intracellular ATP with an increase in extracellular ATP. Leuconosin S and pediocin JD induced a depletion of intracellular ATP. ATP efflux was low for the leuconosin S-treated cells and barely detectable for pediocin JD-treated cells. Addition of nisin, leuconosin S and pediocin JD induced efflux of inorganic phosphate. It appears that bacteriocin-mediated inhibition of the glucose PEP-dependent PTS occurs as a result of hydrolysis or efflux of ATP, PEP and other essential molecules from L. monocytogenes cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号