首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Our previous study demonstrated that there are species differences among vertebrates in their conversion of 7alpha-hydroxycholesterol (7HC) to 7-ketocholesterol (7KC). To examine this further, we investigated the differences in the products of 7alpha-hydroxycholesterol in various species of male muroid rodents. Adult male Syrian hamsters (Mesocricetus auratus), dwarf hamsters (Phodopus rovolovskii), Djungarian hamsters (Phodopus sungorus), Chinese hamsters (Cricetulus griseus), rat-like hamsters (Tscherskia triton), and hispid cotton rats (Sigmodon hispidus) were used. Microsomal fractions were prepared from their livers, and the activities of the enzymes that participate in the dehydrogenation of 7alpha-hydroxycholesterol were determined by measuring the products using high-performance liquid chromatography. 7alpha-hydroxycholesterol was converted to both 7alpha-hydroxy-4-cholesten-3-one (7HCO) and 7-ketocholesterol in all of the hamsters tested. However, in the rat-like hamster and the hispid cotton rat, 7alpha-hydroxycholesterol was converted mostly to 7alpha-hydroxy-4-cholesten-3-one, as also observed in the rat (Rattus norvegicus). The results suggest that microsomal enzyme activity in the conversion of 7alpha-hydroxycholesterol to 7-ketocholesterol varies considerably, even within the subfamily Cricetinae and the family Muridae.  相似文献   

3.
We compared the proportions of mammalian-type and reptilian-type nephrons in the kidneys of two species of passerine birds. The desert house sparrow (Passer domesticus) is relatively well adapted for water conservation, whereas the white-crowned sparrow (Zonotrichia leucophrys) is more mesic adapted. The two species do not differ in body mass, but the kidneys of P. domesticus are significantly smaller than those of Z. leucophrys. Associated with its smaller size, the house sparrow kidney has significantly fewer glomeruli (35,700 per kidney) than does the white-crowned sparrow kidney (53,000 per kidney). The medullary cones, which contain the loops of Henle of the mammalian-type nephrons, are significantly longer in house sparrows than in white-crowned sparrows (2.2 vs. 1.9 mm). The number of medullary cones, the number of nephrons per medullary cone, and, hence, the number of mammalian-type nephrons do not differ between the two species. The smaller number of nephrons in the kidney of the house sparrow therefore represents a smaller number of reptilian-type nephrons. Desert house sparrows have 18% mammalian-type nephrons, whereas white-crowned sparrows have 10% mammaliantype nephrons. The relative reduction of reptilian-type nephrons in P. domesticus may reduce the flow of dilute urine through the collecting ducts, thereby permitting a greater concentration gradient to be established along the length of the medullary cones.  相似文献   

4.
The chronotropic response to acid-base alterations was studied in isolated spontaneously beating atria of rat, cat and rabbit. In the three species, atrial rate was found to be dependent on extracellular pH. Both "respiratory" and "metabolic" alterations affected chronotropism to the same extent. Decreasing pH from 7.8 led to a decrease in rate in the three species, although the rabbit kept atrial rate constant when pH changed between 7.65 and 7.18. There was a curvilinear relationship between rate and pH so that decreasing pH from 7.8 to 7.4 had a lesser chronotropic effect than decreasing pH below 7.4. However, when atrial rate was plotted against hydrogen ion concentration, an almost linear relationship was obtained. Species differences were observed when assessing the absolute decrease of atrial rate for a given change in pH. The rat was the most responsive of the species tested, while the rabbit possessed the least ability to change its rate in response to modifications in pH.  相似文献   

5.
To determine the possible intrarenal site of action of an endogenous ouabain-like natriuretic factor, we searched for the presence of NaK-ATPase highly sensitive to ouabain in the kidney, an organ previously reported to display a low sensitivity to ouabain. For this purpose, the sensitivity of NaK-ATPase to ouabain was determined at the level of single, well defined segments of nephron microdissected from rabbit kidney. Results indicated that NaK-ATPase activity is 10- to 30-fold more sensitive to ouabain in the collecting tubule, where final adjustments of sodium excretion take place, than in more proximal segments of the nephron. [3H]Ouabain binding experiments confirmed this finding as the affinity for ouabain increases from the proximal tubule to the collecting tubule. These results suggest that endogenous natriuretic factor may control sodium transport in the collecting tubule preferentially.  相似文献   

6.
The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light–dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal–nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers’ needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.  相似文献   

7.
Flavodoxins are classified in two groups according to the presence or absence of a approximately 20-residue loop of unknown function. In the accompanying paper (36), we have shown that the differentiating loop from the long-chain Anabaena PCC 7119 flavodoxin is a peripheral structural element that can be removed without preventing the proper folding of the apoprotein. Here we investigate the role played by the loop in the stability and folding mechanism of flavodoxin by comparing the equilibrium and kinetic behavior of the full-length protein with that of loop-lacking, shortened variants. We show that, when the loop is removed, the three-state equilibrium thermal unfolding of apoflavodoxin becomes two-state. Thus, the loop is responsible for the complexity shown by long-chain apoflavodoxins toward thermal denaturation. As for the folding reaction, both shortened and wild type apoflavodoxins display three-state behavior but their folding mechanisms clearly differ. Whereas the full-length protein populates an essentially off-pathway transient intermediate, the additional state observed in the folding of the shortened variant analyzed seems to be simply an alternative native conformation. This finding suggests that the long loop may also be responsible for the accumulation of the kinetic intermediate observed in the full-length protein. Most revealing, however, is that the influence of the loop on the overall conformational stability of apoflavodoxin is quite low and the natively folded shortened variant Delta(120-139) is almost as stable as the wild type protein. The fact that the loop, which is not required for a proper folding of the polypeptide, does not even play a significant role in increasing the conformational stability of the protein supports our proposal (36) that the differentiating loop of long-chain flavodoxins may be related to a recognition function, rather than serving a structural purpose.  相似文献   

8.
9.
Flavodoxins are well known one-domain alpha/beta electron-transfer proteins that, according to the presence or absence of a approximately 20-residue loop splitting the fifth beta-strand of the central beta-sheet, have been classified in two groups: long and short-chain flavodoxins, respectively. Although the flavodoxins have been extensively used as models to study electron transfer, ligand binding, protein stability and folding issues, the role of the loop has not been investigated. We have constructed two shortened versions of the long-chain Anabaena flavodoxin in which the split beta-strand has been spliced to remove the original loop. The two variants have been carefully analyzed using various spectroscopic and hydrodynamic criteria, and one of them is clearly well folded, indicating that the long loop is a peripheral element of the structure of long flavodoxins. However, the removal of the loop (which is not in contact with the cofactor in the native structure) markedly decreases the affinity of the apoflavodoxin-FMN complex. This seems related to the fact that, in long flavodoxins, the adjacent tyrosine-bearing FMN binding loop (which is longer and thus more flexible than in short flavodoxins) is stabilized in its competent conformation by interactions with the excised loop. The modest role played by the long loop of long flavodoxins in the structure of these proteins (and in its conformational stability, see Lopez-Llano, J., Maldonado, S., Jain, S., Lostao, A., Godoy-Ruiz, R., Sanchez-Ruiz, Cortijo, M., Fernandez-Recio, J., and Sancho, J. (2004) J. Biol. Chem. 279, 47184-47191) opens the possibility that its conservation in so many species is related to a functional role yet to be discovered. In this respect, we discuss the possibility that the long loop is involved in the recognition of some flavodoxin partners. In addition, we report on a structural feature of flavodoxins that could indicate that the short flavodoxins derive from the long ones.  相似文献   

10.
11.
12.
13.
Rodents representative of a diurnal species (Rhabdomys pumilio) as well as a nocturnal species (Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.Present address: University of Haifa, Oramin, P.O. Kiryat Tivon, Israel.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

14.
15.
16.
17.
18.
19.
The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts also regulate short-range events such as spindle rotation and gastrulation, and a PCP-like pathway regulates asymmetric divisions. Long-range, cell non-autonomous Wnt signals regulate vulval induction. Both short-range and long-range Wnt signal s are regulated by recycling of MIG-14/Wntless via the retromer complex. These studies indicate that C. elegans continues to be useful for identifying new, conserved mechanisms underlying Wnt signaling in metazoans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号