首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Activation of the endogenous Ca2+-activated phospholipid-dependent protein kinase (protein kinase C) by Ca2+, phosphatidylserine (PS) and phorbol dibutyrate (PBt2) in detergent-solubilized extracts of Swiss 3T3 cells resulted in a very rapid increase (detectable within seconds) in the phosphorylation of an 80 000 mol. wt. protein (termed 80 K). Neither cyclic AMP nor Ca2+ had any effect on 80 K phosphorylation. The 80 K phosphoproteins generated after activation of protein kinase C, both in cell-free conditions and in intact fibroblasts, are identical as judged by one and two-dimensional polyacrylamide slab gel electrophoresis and peptide mapping. Prolonged treatment of cells with phorbol esters causes a selective decrease in protein kinase C activity and prevents the stimulation of 80 K phosphorylation in intact fibroblasts. We now show that extracts from PBt2-treated cultures fail to stimulate 80 K phosphorylation after the addition of the protein kinase C activators. This effect was due to the lack of protein kinase C activity since the addition of exogenous protein kinase C from mouse brain stimulated 80 K phosphorylation in both control and PBt2-treated preparations. The 80 K phosphoprotein generated by activation of endogenous and exogenous protein kinase C yielded similar phosphopeptide fragments after peptide mapping by limited proteolysis. We conclude that the detection of changes in the phosphorylation of 80 K provides a useful approach to ascertain which extracellular ligands activate protein kinase C in intact cells.  相似文献   

2.
Addition of vasopressin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an acidic molecular weight 80,000 cellular protein (termed 80K). The effect was concentration- and time-dependent; enhancement in 80K phosphorylation could be detected as early as 30 sec after the addition of the hormone. Recently, a rapid increase in the phosphorylation of an 80K cellular protein following treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact Swiss 3T3 cells. Here we show that the 80K phosphoproteins generated in response to vasopressin and phorbol 12,13-dibutyrate (PBt2) were identical as judged by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) and peptide mapping following partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with PBt2 which leads to the disappearance of protein kinase C activity blocked the ability of vasopressin to stimulate the phosphorylation of 80K. The effect of vasopressin on 80K phosphorylation and mitogenesis was selectively blocked by the vasopressin antagonist (Pmp1-O-Me-Tyr2-Arg8) vasopressin suggesting that these responses are mediated by its specific receptor in these cells. The removal of vasopressin leads to dephosphorylation (within minutes) of the 80K phosphoprotein. We conclude that vasopressin rapidly stimulates protein kinase C activity in intact 3T3 cells.  相似文献   

3.
Guanine nucleotides and pertussis toxin were used to test for the involvement of a guanine nucleotide binding protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C activity in Swiss 3T3 cells. Addition of vasopressin in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid increase (8 +/- 1-fold after 1 min) in the phosphorylation of an Mr = 80,000 cellular protein (80K), a specific marker for protein kinase C activation. This phosphorylation was selectively blocked by the V1 receptor antagonist Pmp1-0-Me-Tyr2 [Arg8] vasopressin, indicating that the effect was mediated through the vasopressin V1 receptor. Down regulation of protein kinase C by prior prolonged pretreatment of intact cells with phorbol 12,13-dibutyrate (PBt2) blocked the ability of vasopressin to stimulate the phosphorylation of 80K in digitonin-permeabilized cells. Addition of a submaximal concentration of vasopressin together with the GTP analogue GTP-gamma-S caused a synergistic stimulation of 80K phosphorylation. The GDP analogue GDP-beta-S caused a 50% inhibition of the phosphorylation of 80K induced by a saturating concentration of vasopressin and shifted the vasopressin dose-response curve to the right. GDP-beta-S had no effect on the dose-response for the stimulation of 80K phosphorylation induced by PBt2. Prior incubation of intact quiescent cultures of Swiss 3T3 cells with pertussis toxin did not impair either vasopressin-induced increase in cytosolic [Ca2+] or activation of protein kinase C. These findings provide functional evidence for the involvement of a pertussis toxin-insesitive G protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C in Swiss 3T3 cells.  相似文献   

4.
Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an Mr 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent; enhancement in 80k phosphorylation could be detected as early as 10 s after the addition of peptide. Recently, a rapid increase in the phosphorylation of an 80k cellular protein after treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact fibroblasts (Rozengurt, E., A. Rodriguez-Pena, and K. A. Smith, 1983, Proc. Natl. Acad. Sci. USA., 80:7244-7248; Rozengurt, E., A. Rodriguez-Pena, M. Coombs, and J. Sinnett-Smith, 1984, Proc. Natl. Acad. Sci. USA., 81:5748-5752). The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125I-labeled epidermal growth factor (125I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. Peptides structurally related to bombesin, including gastrin-releasing peptide, also stimulated 80k phosphorylation and inhibited 125I-EGF binding; both effects were selectively blocked by a novel bombesin antagonist. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca2+ concentration does not mediate the bombesin inhibition of 125I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125I-EGF to its cellular receptor.  相似文献   

5.
Pasteurella multocida toxin, either native or recombinant (rPMT), is an extremely effective mitogen for Swiss 3T3 cells and acts at picomolar concentrations (Rozengurt, E., Higgins, T. E., Chanter, N., Lax, A. J., and Staddon, J. M. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 123-127). Here, we show that similar concentrations of rPMT markedly stimulated the phosphorylation of an acidic 80-kDa protein in [32P]Pi-labeled Swiss 3T3 cells. Co-migration on one- and two-dimensional gels and phosphopeptide analysis indicated that this phosphoprotein was indistinguishable from 80K, a known protein kinase C substrate. In parallel cultures, the stimulation of 80K phosphorylation by rPMT (5-10-fold) was comparable to that induced by bombesin or phorbol dibutyrate (PBt2). However, the increase in phosphorylation by rPMT occurred after a pronounced lag period (1-3 h, depending upon the concentration of rPMT) in contrast to the relatively immediate stimulation by PBt2 or bombesin. Early, but not late, addition of either PMT antiserum or the lysosomotrophic agent methylamine selectively inhibited 80K phosphorylation in response to rPMT. 80K phosphorylation persisted after removal of free toxin and was not inhibited by cycloheximide. It appears that rPMT enters the cells via an endocytotic pathway to initiate and perpetuate events leading to 80K phosphorylation. rPMT, like PBt2, also stimulated the phosphorylation of 87-kDa and 33-kDa proteins in Swiss 3T3 cells. Phosphorylation of the 80K and 87-kDa proteins by rPMT or PBt2 were greatly attenuated in cells depleted of protein kinase C. In contrast, phosphorylation of the 33-kDa protein by rPMT, but not by PBt2, persisted in the absence of protein kinase C. rPMT, like bombesin, caused a translocation of protein kinase C to the cellular particulate fraction. The toxin enhanced the cellular content of diacylglycerol. rPMT also caused a time- and dose-dependent decrease in the binding of 125I-epidermal growth factor to its receptor which was blocked by methylamine and dependent only in part upon the presence of protein kinase C. We conclude that rPMT stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells.  相似文献   

6.
To elucidate the transmembrane signalling processes initiated by fibroblast growth factor (FGF), we have studied the effect of recombinant basic FGF (bFGF) on various early events associated with mitogenesis in Swiss 3T3 fibroblasts. bFGF, at mitogenic concentrations, neither induced Ca2+ mobilization from intracellular stores nor increased the accumulation of inositol phosphates. In contrast, bFGF stimulated the phosphorylation of the Mr 80,000 (80K) cellular protein which is a major substrate of protein kinase C. This effect was potentiated by the diacylglycerol kinase inhibitor R59022. Two-dimensional polyacrylamide gel electrophoresis and phosphopeptide mapping showed that the 80K phosphoproteins generated in response to bFGF, bombesin, and phorbol 12,13-dibutyrate were indistinguishable. Down-regulation of protein kinase C prevented bFGF stimulation of 80K phosphorylation. Other protein kinase C-dependent early events such as transmodulation of the epidermal growth factor receptor, cytoplasmic alkalinization, inhibition of vasopressin induced increase in cytosolic [Ca2+], and enhancement of cAMP accumulation in response to forskolin were also induced by bFGF. Similar results were obtained when bFGF was added to quiescent cultures of tertiary mouse embryo fibroblasts. We conclude that bFGF stimulates protein kinase C through a signal transduction pathway distinct from inositol phospholipid turnover and Ca2+ mobilization.  相似文献   

7.
Addition of phorbol 12, 13 dibutyrate (PBt2) or a combination of epidermal growth factor (EGF) and insulin to quiescent cultures of Swiss 3T3 cells increased intracellular pH in a Na+-dependent fashion. In contrast to PBt2, EGF plus insulin failed to stimulate protein kinase C and elicited the ionic response in cells lacking this enzyme. We suggest that the stimulation of the Na+/H+ antiport in Swiss 3T3 cells is mediated by at least two separate pathways, only one of which is dependent upon the activation of protein kinase C.  相似文献   

8.
We have recently reported that a polypeptide mitogen, the embryonal carcinoma-derived growth factor (ECDGF), induces phosphorylation of the epidermal growth factor (EGF) receptor in intact C3H 10T 1/2 mouse fibroblasts with concomittant loss of high affinity EGF binding sites. This phenomenon appears to be mediated through an activation of protein kinase C. Several groups have described an acidic 80,000 dalton protein substrate of protein kinase C. In this paper, we demonstrate that the addition of ECDGF or the phorbol ester TPA to intact C3H 10T 1/2 cells results in the enhanced phosphorylation of this 80 kd protein in vivo. Furthermore, this response is demonstrable in vitro. Thus the addition of ECDGF, the phorbol ester TPA, protein kinase C or phosphoinositidase C to crude membranes prepared from C3H 10T 1/2 cells resulted in the enhanced phosphorylation of this protein. Data obtained by phosphopeptide mapping of the 80 kd protein show that the ECDGF-induced activation of protein kinase C in our membrane preparations is comparable with that obtained in vivo. The availability of an in vitro system in which this response is preserved should now allow a detailed biochemical analysis of the steps between binding of a mitogen to its receptor and the activation of protein kinase C.  相似文献   

9.
Subconfluent cultures of NIH-3T3 fibroblasts transformed by the Ha-ras, Ki-v-ras, v-src, and v-fms oncogene proteins all possess elevated steady-state levels of diacylglycerol, the endogenous activator of protein kinase C, as compared to the nontransformed parental lines. These oncogene-transformed fibroblasts also exhibit a significantly decreased level of cellular protein kinase C activity as measured by four different criteria: phorbol ester-stimulated phosphorylation of an endogenous 80-kilodalton (80 kDa) substrate; phorbol ester-stimulated changes in 86Rb uptake; enzymatic assay; and [3H]phorbol ester binding. In all cases, the transformed cells demonstrated an attenuated response to phorbol ester addition and a lower phorbol ester binding capacity as compared to the parental lines. Western analysis of the endogenous 80-kDa substrate of protein kinase C revealed a significantly lower level of this protein in the transformed cells than in the untransformed controls, and this decrease could be mimicked in parental cells by long-term incubation with phorbol esters, suggesting that the level of the 80-kDa protein is regulated by the state of activation of protein kinase C. These effects do not appear to be nonspecific responses to autocrine secretions by the transformed cells. They may represent an unsuccessful attempt by the transformed cells to negatively modulate the constitutive proliferative signals generated by the oncogene products.  相似文献   

10.
Both bryostatin 1 and 4 beta-phorbol 12,13-dibutyrate (PBt2) activate Ca2+- and phospholipid-dependent protein kinase (protein kinase C) at the plasma membrane in HL-60 cells (Kraft, A. S., Baker, V. V., and May, W. S. (1987) Oncogene 1, 91-100). However, whereas PBt2 causes HL-60 cells to cease dividing and differentiate, bryostatin 1 antagonizes this effect and allows cells to continue proliferating. To test whether these divergent effects could be due to the differential activation of protein kinase C at the nuclear level, the phosphorylation of nuclear envelope polypeptides was evaluated in cells treated with either bryostatin 1 or PBt2. Bryostatin 1, either alone or in combination with PBt2, but not PBt2 alone, mediates rapid and specific phosphorylation of several nuclear envelope polypeptides. A major target for bryostatin-induced phosphorylation is the major nuclear envelope polypeptide lamin B (Mr = 67,000, pI 6.0). In vitro studies combining purified protein kinase C and HL-60 cell nuclear envelopes demonstrate that bryostatin activates protein kinase C to phosphorylate lamin B, whereas PBt2 does so only weakly, suggesting selective activation of this enzyme toward this substrate. Comparative phosphopeptide and phosphoamino acid analyses demonstrate that bryostatin induces phosphorylation of identical serine sites on lamin B both in whole cells and in vitro. Treatment of whole cells with bryostatin, but not PBt2, leads to specific translocation of activated protein kinase C to the nuclear envelope. Since phosphorylation of lamin B is known to be involved in nuclear lamina depolymerization at the time of mitosis, it is possible that bryostatin-activated protein kinase C activity is involved in this process. Finally, specific activation of protein kinase C at the nuclear membrane could explain, at least in part, the divergent effects of bryostatin 1 and PBt2 on HL-60 cell growth.  相似文献   

11.
12.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

13.
Treatment of quiescent human embryonic lung fibroblastic cells (TIG-3) with 10 nM epidermal growth factor (EGF) resulted in 4-6-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein 2 (MAP2) on serine and threonine residues in vitro. The half-maximal activation of the kinase activity occurred within 5 min after EGF treatment, and the maximal level was attained at 15 min. Casein and histone were very poor substrates for this EGF-stimulated MAP2 kinase activity. The activation of the kinase activity persisted after brief dialysis. Interestingly, the EGF-stimulated MAP2 kinase activity was sensitive to micromolar concentrations of free Ca2+; it was inhibited 50% by 0.5 microM Ca2+ and almost totally inhibited by 2 microM Ca2+. The activated MAP2 kinase activity was recovered in flow-through fractions on phosphocellulose column chromatography, while kinase activities that phosphorylate 40 S ribosomal protein S6 (S6 kinase activities) were mostly retained on the column and eluted at 0.5 M NaCl. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, phorbol esters (12-O-tetradecanoylphorbol 13-acetate and phorbol 12,13-dibutyrate), and fresh fetal calf serum also induced activation of the MAP2 kinase in the quiescent TIG-3 cells. The activated MAP2 kinase activity in cells stimulated by platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, 12-O-tetradecanoylphorbol 13-acetate, phorbol 12,13-dibutyrate, or fetal calf serum was almost completely inhibited by 2 microM Ca2+, like the EGF-stimulated kinase. In addition, MAP2 phosphorylated by the kinase activated by different stimuli gave very similar phosphopeptide mapping patterns. These results suggest that several growth factors, phorbol esters, and serum activate a common, Ca2+-inhibitable protein kinase which is distinct from S6 kinase in quiescent human fibroblasts.  相似文献   

14.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

15.
Ornithine decarboxylase activity was assessed in serum-deprived quiescent NIH-3T3 murine fibroblasts after exposure to a variety of growth-promoting factors. Ornithine decarboxylase activity increased after treatment with phorbol 12-myristate 13-acetate (PMA), fetal calf serum, bovine pituitary fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and the synthetic diacyglycerol sn-1,2-dioctanolyglycerol but not after treatment with epidermal growth factor, insulin, 4 alpha-phorbol 12,13-didecanoate, sn-1,2-dibutyrylglycerol, or the calcium ionophore A23187. Activity peaked at 3-4 h and returned to basal levels after 8 h. To determine the importance of protein kinase C in this increase, cells were pretreated with PMA for 16 h to make the cells effectively deficient in protein kinase C; this deficiency was documented by direct measurement of enzyme activity and immunoreactivity. The ornithine decarboxylase response to each mitogen was then compared in cells pretreated with PMA or control conditions. PMA pretreatment abolished the increase in ornithine decarboxylase activity due to additional PMA and decreased but did not eliminate the ability of serum, FGF, and PDGF to cause increases in ornithine decarboxylase activity. Similarly, pretreatment with PMA abolished the ability of additional PMA to increase ornithine decarboxylase mRNA levels but did not prevent the increases in these mRNA levels caused by FGF or serum. These data suggest that the increases in ornithine decarboxylase activity and mRNA levels that occur in quiescent fibroblasts in response to serum, FGF, or PDGF are due to activation of at least two separate pathways, one involving protein kinase C and the other independent of protein kinase C.  相似文献   

16.
The tumor-promoting phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, causes a rapid, partial redistribution of 1,2-sn-diacylglycerol kinase from the cytosol to the particulate fraction of quiescent, starved Swiss 3T3 fibroblasts. We utilized exogenous dioleoylglycerol as substrate for the kinase. The inactive alpha form of the phorbol ester does not cause any change in diacylglycerol kinase localization, and depletion of protein kinase C (Ca2+/phospholipid-dependent enzyme) by chronic administration of phorbol ester blocks the redistribution. Phorbol ester has no direct effect on Swiss 3T3 membrane-bound diacylglycerol kinase nor does it directly effect cytosolic diacylglycerol kinase. When phorbol ester is added to Swiss 3T3 membranes in the presence of ATP, magnesium, and calcium, there is no activation of membrane-bound kinase, indicating that phorbol ester does not activate membrane-bound kinase through phosphorylation by protein kinase C. Reconstitution studies show that the soluble rat brain diacylglycerol kinase binds to diacylglycerol-enriched membranes, produced by treatment of red cell ghosts with phospholipase C or calcium, suggesting that cytosolic diacylglycerol kinase may be capable of translocation to the membrane in response to elevated substrate concentration in the intact cell. Stimulation of the cells with phorbol ester increases the total mass of diacylglycerol. In protein kinase C-depleted cells, addition of a cell-permeable synthetic diacylglycerol, dioctanoylglycerol, results in a partial redistribution of cytosolic diacylglycerol kinase to the membrane, by 5 min, also suggesting that the translocation of diacylglycerol kinase activity is regulated primarily by substrate concentration.  相似文献   

17.
Mitogenic stimulation of sparse quiescent Swiss 3T3 cells with serum induces a transient reorganization of microtubules which may be necessary for generation or transduction of the mitogenic signal(s). Recently, several studies have shown that microtubule-associated proteins (MAPs) modulate microtubule-mediated functions in vitro and in vivo. We have analyzed, by two-dimensional electrophoresis, the molecular changes in MAPs associated with microtubules in situ following cell activation. By as early as 15 min after addition of serum, several of the MAPs present in quiescent cells are lost from the assembled microtubule fraction while one additional MAP becomes evident. This new MAP is a phosphoprotein whose appearance is independent of protein synthesis. Four additional MAPs also become phosphorylated, and this phosphorylation is accompanied by a partial redistribution of MAPs into the unassembled soluble fraction. Stimulation of cells with purified platelet-derived growth factor or phorbol tumor promoter, a direct activator of protein kinase C, also induces phosphorylation of the same MAPs and DNA synthesis. These results demonstrate that activation of the protein kinase C pathway is sufficient to promote the phosphorylation of MAPs and mitogenesis. However, epidermal growth factor, which does not activate protein kinase C, also stimulates phosphorylation of MAPs and DNA replication. Furthermore, down-regulation of the protein kinase C pathway does not prevent these responses. We conclude that phosphorylation of MAPs and mitogenesis can proceed through protein kinase C-dependent and -independent pathways in 3T3 cells.  相似文献   

18.
Stimulation of quiescent human fibroblasts with the peptide mitogen bradykinin (BK) led to a biphasic elevation in cellular 1,2-diacylglycerol (DAG), as estimated by either measurement of total DAG mass or [3H]arachidonate incorporation. A rapid initial transient that peaked 15 s after BK addition was followed by a decline to near basal levels then a second rise to a plateau phase during which DAG levels remained elevated for less than or equal to 45 min. The source of the initial DAG transient appeared to be primarily polyphosphoinositides as these phospholipids were rapidly hydrolyzed after BK addition. This transient correlates well temporally with previous observations of the kinetics of inositol trisphosphate accumulation and intracellular free [Ca2+] observed in the same cells. Cultures preincubated with [3H]myristic acid incorporated label predominantly into the phosphatidylcholine (PC) pool. Subsequent addition of BK under these conditions caused only a relatively slow accumulation of [3H]DAG to a plateau level, without an initial transient. Together with the observation that PC was found to decrease upon BK stimulation, these observations suggest that the late phase of DAG accumulation may involve breakdown of other phospholipids including PC. To investigate the consequences of DAG elevation we examined the phosphorylation of an acidic 80 kDa protein, whose phosphorylation is solely dependent on the activation of protein kinase C (PK-C). The 80 kDa fibroblast protein could be immunoprecipitated by an antibody to bovine brain "myristoylated and alanine-rich C-kinase substrate" (MARCKS) and phosphopeptide maps of brain and fibroblast MARCKS were similar. Stimulation of [32P]-prelabeled fibroblasts with serum, BK, vasopressin, or 12-O-tetradecanoyl phorbol acetate, but not epidermal growth factor or calcium ionophores, resulted in the rapid phosphorylation of MARCKS. With BK or serum this phosphorylation showed an initial transient peak at less than 1 min then rose again to a plateau level that was sustained for less than or equal to 45 min. Removal of BK resulted in a rapid decline in MARCKS phosphorylation. These studies show that the biphasic DAG signal in BK-stimulated human fibroblasts correlates well with the state of activation of PK-C. However, the persistent activation of PK-C does not appear to require continued high levels of Ca2+.  相似文献   

19.
The results presented here demonstrate that bradykinin, acting through a B2 subtype receptor, induces a unique pattern of early signals in quiescent Swiss 3T3 cells. Bradykinin caused a rapid mobilization of calcium from internal stores, as judged by measurements of intracellular Ca2+ concentration in fura-2-loaded cells and by 45Ca2+ efflux from radiolabeled cells. Analysis of phosphoproteins from 32P-labeled Swiss 3T3 cells by one- and two-dimensional gel electrophoresis revealed that bradykinin stimulated transient phosphorylation of an acidic cellular protein migrating with an apparent Mr = 80,000 (termed 80K), identified as a major and specific substrate of protein kinase C. Down-regulation of protein kinase C by pretreatment with phorbol 12,13-dibutyrate (PDBu) completely abolished the increase in 80K phosphorylation. In contrast to the sustained effect induced by bombesin, vasopressin, or PDBu, the stimulation of 80K phosphorylation by bradykinin reached a maximum after 1 min of incubation, and then it rapidly decreased to almost basal levels. Furthermore, bradykinin did not induce protein kinase C-mediated events such as inhibition of 125I-epidermal growth factor binding or enhancement of cAMP accumulation. Bombesin and vasopressin elicited both responses in parallel cultures. Bradykinin induced rapid accumulation of total inositol phosphates in cells labeled with myo-[3H]inositol. In contrast to bombesin and vasopressin which stimulated a linear increase in inositol phosphate accumulation over a 10-min period, the effect of bradykinin reached a plateau after 2.5 min of incubation with no further increase up to 10 min. The results demonstrate that the early signaling events triggered by bradykinin can be distinguished from those elicited by bombesin and vasopressin in Swiss 3T3 cells.  相似文献   

20.
Sphingosine, a metabolite of membrane sphingolipids, is generally considered to be cytotoxic for a variety of cell types. However, we have found that sphingosine at low concentrations stimulates DNA synthesis and acts synergistically with known growth factors to induce proliferation of quiescent Swiss 3T3 fibroblasts. Structurally related analogs of sphingosine, such as N-stearoylsphingosine and other long chain aliphatic amines, had no mitogenic effects, suggesting that sphingosine did not induce nonspecific membrane perturbations. Sphingosine, which has been proposed to be a physiological inhibitor of protein kinase C, also markedly potentiates the mitogenic effect of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Sphingosine still stimulates DNA synthesis in cells made protein kinase C deficient by prolonged treatment with phorbol ester. At mitogenic concentrations, sphingosine does not bind to protein kinase C as shown by its lack of effect on phorbol dibutyrate binding. Only at higher concentrations, in the cytotoxic range, was there a displacement of phorbol dibutyrate from its cellular-binding sites. In contrast to sphingosine, H-7, a known inhibitor of protein kinase C, inhibited the mitogenic response to TPA and the TPA-induced phosphorylation of the 80 kDa cellular substrate of protein kinase C. Our results suggest that sphingosine may play an important role as a positive regulator of cell growth acting in a fundamentally different, protein kinase C-independent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号