首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
人微小病毒B19感染的研究进展   总被引:4,自引:0,他引:4  
近年来人微小病毒B19(human parvovirus B19)作为人类疾病的重要病原已愈来愈广泛受到重视。大量研究成果不但揭示了B19病毒的致病机理,Th-1介导的细胞免疫应答,而且发展了B19感染的诊断和B19污染血制品的筛查技术,并且为疫苗的研制奠定了基础。这里对人类B19病毒的病原学特征、致病机理、临床症状及实验室诊断方法和技术进行了较全面的综述。  相似文献   

3.
Parvovirus (PV) B19 is the causative agent of the childhood disease erythema infectiosum. An association of PV B19 with chronic arthropathies, sometimes resembling rheumatoid arthritis or juvenile idiopathic arthritis (JIA), has repeatedly been described. Other studies, however, have failed to identify any such relationship. In order to study further whether there is a link between PV B19 and JIA, we determined the prevalence of PV B19 specific IgG antibodies in serum samples from children with rheumatoid diseases and compared it with the prevalence in unaffected children We reasoned that if there is an association between PV B19 and JIA, then the prevalence of PV B19 IgG in the children with JIA should be higher than in the control group. PV B19 IgG status was tested in 406 children with JIA and related diseases, and in 146 children constituting a control group. The percentage of PV B19 IgG positive children was not significantly elevated in the disease subgroups compared with age-matched control groups. In conclusion, our findings do not support the hypothesis that human parvovirus B19 is involved in the pathogenesis of JIA.  相似文献   

4.
5.
Parvovirus B19 (B19V) can cause infection in humans. To date, three genotypes of B19V, with subtypes, are known, of which genotype 1a is the most prevalent genotype in the Western world. We sequenced the genome of B19V strains of 65 asymptomatic, recently infected Dutch blood donors, to investigate the spatio-temporal distribution of B19V strains, in the years 2003-2009. The sequences were compared to B19V sequences from Dutch patients with fifth disease, and to global B19V sequences as available from GenBank. All Dutch B19V strains belonged to genotype 1a. Phylogenetic analysis of the strains from Dutch blood donors showed that two groups of genotype 1a co-exist. A clear-cut division into the two groups was also found among the B19V strains from Dutch patients, and among the B19V sequences in GenBank. The two groups of genotype 1a co-exist around the world and do not appear to differ in their ability to cause disease. Strikingly, the two groups of B19V predominantly differ in synonymous mutations, distributed throughout the entire genome of B19V. We propose to call the two groups of B19V genotype 1a respectively subtype 1a1 and 1a2.  相似文献   

6.
Parvovirus B19 (B19V) infects individuals worldwide and is associated with an ample range of pathologies and clinical manifestations. B19V is classified into three distinct genotypes, all identified in Brazil. Here, we report a complete sequence of a B19V genotype 1A that was obtained by high-throughput metagenomic sequencing. This genome provides information that will contribute to the studies on B19V epidemiology and evolution.  相似文献   

7.
CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19(-/-)) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn(-/-)) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn(-/-)). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn(-/-) B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn(-/-) mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn(-/-) B cells relative to Lyn(-/-) B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca(2+) responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.  相似文献   

8.
Background:Parvovirus B19 (B19) infection is linked with various diseases. Cytokines play critical roles in cellular response to viral infection. It has also been reported that’s susceptibility of the ABO blood type people to several viral infection. In this study, we evaluated interleukin 6 (IL-6), interleukin 8(IL-8), and interferon gamma (IFN-γ) levels in aborted women infected with parvovirus B19 (B19+/Abr+) and uninfected with B19(B19-/Abr+) in comparison with healthy women (B12-/Abr-) and susceptibility of their RhD blood type to contract B19.Methods:B19+/Abr+ were diagnosed using IgM and IgG antibodies against B19, and the concentrations of IL-6, IL-8, and IFN-γ were determined using enzyme-linked immunosorbent assay (ELISA) test in both B19+/Abr+, B19-/Abr+, and B19-/Abr-. Here, we also collected blood groups, number of abortion, and gestational ages from 200 B19+/Abr+ along with the same number ofB19-/Abr+ and B19-/Abr-.Results:The levels of IFN-γ were higher in serum of B19-/Abr+andB19+/Abr+ group in comparison to B19-/Abr-, while the serum levels of IL-6, IL-8were increased in B19+/Abr+ group in comparisontoB19-/Abr+ and B19-/Abr-. Our analyzed data also showed that aborted women with RhD+ are more susceptible to contract s B19 than people with RhD- blood type.Conclusion:B19 infection may differently modulate the amount of cytokines in the plasma of aborted women. So, it can be suggested that IL-6, IL-8, and IFN-γ potentially useful as markers for inflammation intrauterine. The susceptibility/protection of aborted women against B19 might be determined based on RhD blood type.Key Words: Aborted women, IL-6, IL-8, IFN-γ, Parvovirus B19, RhD blood type  相似文献   

9.
Erythroid lineage cells derived from fetal liver were demonstrated to be target cells for human parvovirus B19 infection. B19 virus antigen-positive serum was inoculated into primary cultures containing erythroid lineage cells enriched from fetal liver. The B19 virus antigen was detected on about 5% of cells in the culture by immunofluorescence staining, and the stained cells were identified as erythroid lineage cells by double staining with anti-B19 virus-positive serum and anti-erythroid lineage monoclonal antibody. The immunofluorescence staining study also revealed that the B19 virus antigen localized in the nucleus and the periphery of cytoplasm. We also detected B19 virus DNA, which was generated by replication in the infected cells, not only in the cells but also in the culture supernatants, in which the amount of B19 DNA increased depending on the period of culture, indicating that the cells infected with B19 virus produced B19 virus and released it into the medium. The ability of B19 virus released into the medium to infect fetal erythroid lineage cells was demonstrated quantitatively. Because of the absence of any cytopathic effect of B19 virus during culture periods of at least 15 days, this culture system should be useful in the study of B19 virus replication and in vitro generation of B19 virus. In addition, the present study may contribute to a better understanding of the pathogenesis of hydrops fetalis, which is probably associated with B19 virus infection during pregnancy.  相似文献   

10.
CYP2B19 is an arachidonic acid monooxygenase highly expressed in the outer, differentiated cell layers of mouse epidermis. We aimed to establish whether CYP2B19 is the source of epidermal epoxyeicosatrienoic acids (EETs), which are implicated in mechanisms regulating epidermal cornification. We show that primary cultures of mouse epidermal keratinocytes expressed native CYP2B19, as determined by mass spectrometry. Differentiation upregulated CYP2B19 mRNA levels ( approximately 39-fold) detected by real-time PCR, CYP2B19 immunoreactivity detected by Western blotting, and cellular levels of the CYP2B19 product 11,12-EET. Cellular 11,12-EET formed from endogenous arachidonic acid increased preferentially (4- to 12-fold) at Day 4 or 5 of differentiation, compared with undifferentiated (Day 0) keratinocyte cultures. Temporally, these results concur with the maximal levels of CYP2B19 mRNA measured at Day 2 and CYP2B19 immunoreactivity at Day 4. We conclude that while mouse epidermis likely expresses multiple cytochrome P450 enzymes, existing evidence supports native CYP2B19 as being the major source of epidermal EET formation.  相似文献   

11.
LncRNA H19 is involved in the development of multiple cancers. Here, we firstly provide new evidence that H19 can induce LIN28B, a conserved RNA binding protein, to accelerate lung cancer growth through sponging miR-196b. Abundance in LIN28B was observed in clinical lung cancer samples. A positive link was observed between H19 and LIN28B in clinical lung cancer samples. In lung cancer cells, H19 was capable of increasing LIN28B expression. Mechanistically, miR-196b directly targeted LIN28B to inhibit LIN28B expression. H19 was capable of promoting LIN28B expression through sequestering miR-196b. Functionally, H19-increased LIN28B conferred the cell proliferation of lung cancer. Our finding indicates that H19 depresses miR-196b to elevate LIN28B, resulting in accelerating cell proliferation in lung cancer.  相似文献   

12.
Human parvovirus B19 (B19V) is a small (22-24 nm) nonenveloped DNA virus belonging to the genus Erythrovirus (family Parvoviridae). Although it generally causes self-limiting conditions in healthy people, B19V infection may have a different outcome in patients with inherited hemolytic anemias. In such high-risk individuals, the high-titer replication may result in bone marrow suppression, triggering a life-threatening drop of hemoglobin values (profound anemia, aplastic crisis). To date there is no consensus concerning a B19V screening program either for the blood donations used in the hemotherapy or for high-risk patients. Moreover, questions such as the molecular mechanisms by which B19V produces latency and persistent replication, the primary site (sites) of B19V infection and B19V immunopathology are far from being known. This review summarizes general aspects of B19V molecular characteristics, pathogenesis and diagnostic approaches with a focus on the role of this pathogen in blood transfusions and in patients with some hemoglobinopathies (sickle-cell disease, thalassemia).  相似文献   

13.
Tyrosine phosphorylation of CD19 in pre-B and mature B cells.   总被引:12,自引:0,他引:12       下载免费PDF全文
Cross-linking of B cell surface immunoglobulins (sIg) results in activation of mature B cells and stimulates a molecular signaling mechanism for antigen-specific B cell expansion and differentiation. This signaling pathway is dependent on tyrosine (Tyr) phosphorylation and results in the activation of sIg-associated src family kinases and p72SYK. Rapid Tyr phosphorylation occurs on multiple protein substrates. Here we show that activation of B cells by cross-linking sIg results in an increase in Tyr phosphorylation of the lineage-restricted B cell surface antigen CD19, and show that it is a major substrate of activated Tyr kinase following sIg stimulation. Lower levels of constitutive CD19 Tyr phosphorylation occurred in most sIg+ mature B cell lines examined and in normal dense tonsillar B cells. We also find that when CD19 is Tyr-phosphorylated it becomes competent to interact with SH2 domains suggesting a mechanism whereby, following B cell activation, CD19 could be linked to intracellular signaling pathways. In sIg- pre-B cell lines, CD19 was expressed but was not constitutively phosphorylated on tyrosine. Upon CD19 cross-linking, Tyr phosphorylation of CD19 was induced in sIg- pre-B cell lines. CD19 cross-linking also directly induced Tyr phosphorylation of CD19 and other substrates in mature B cells. The ability of CD19 to signal in the absence of sIg expression may provide important stimulation in pre-B cell development.  相似文献   

14.
CD81 is a widely expressed tetraspanin that associates in B cells with CD19 in the CD19-CD21-CD81 signaling complex. CD81 is necessary for normal CD19 expression; cd81(-/-) B cells express lower levels of CD19, especially cd81(-/-) small pre-BII cells, which are almost devoid of surface CD19. The dependence of CD19 expression on CD81 is specific to this particular tetraspanin since cd9(-/-) B cells express normal levels of CD19. Furthermore, expression of human CD81 in mouse cd81(-/-) B cells restored surface CD19 to normal levels. Quantitative analysis of CD19 mRNA demonstrated normal levels, even in cd81(-/-) pre-BII cells. Analysis of CD19 at the protein level identified two CD19 glycoforms in both wild-type and cd81(-/-) B cells. The higher M(r) glycoform is significantly reduced in cd81(-/-) B cells and is endoglycosidase H (endo-H) resistant. In contrast, the low M(r) glycoform is comparably expressed in cd81(-/-) and in wild-type B cells and is endo-H sensitive. Because endo-H sensitivity is tightly correlated with endoplasmic reticulum localization, we suggest that the dependency of CD19 expression on CD81 occurs in a postendoplasmic reticulum compartment where CD81 is necessary for normal trafficking or for surface membrane stability of CD19.  相似文献   

15.
Loss of membrane-bound Ig results in the rapid onset of apoptosis in recirculating B cells. This observation implies that a competent B cell receptor (BCR) is not only required for Ag-dependent differentiation, but also for continued survival in the peripheral immune system. Expression of the B cell coreceptor, CD19, is likewise essential for key B cell differentiative events including the formation of B-1, germinal center, and marginal zone (MZ) B cells. In this study, we report that CD19 also exerts a role before Ag encounter by promoting the survival of naive recirculating B cells. This aspect of CD19 signaling was first suggested by the analysis of mixed bone marrow chimeras, wherein CD19-/- B cells fail to effectively compete with wild-type B cells to reconstitute the peripheral B cell compartment. Consistent with this observation, Bromodeoxyuridine- and CFSE-labeling studies reveal a shorter in vivo life span for CD19-/- B cells vs their wild-type counterparts. Moreover, we find that CD19 is necessary for propagation of BCR-induced survival signals and thus may contribute to homeostatic mechanisms of tonic signaling. To determine whether provision of a constitutive survival signal could compensate for the loss of CD19 in vivo, Bcl-2-transgenic mice were bred onto the CD19-/- background. Here, we observe an increase in follicular B cell numbers and selective recovery of the MZ B cell compartment. Together these findings suggest that maintenance of the follicular and MZ B cell compartments require CD19-dependent survival signals.  相似文献   

16.
Abstract Brucella abortus B19, an avirulent strain obtained by spontaneous mutation, is used worldwide as a vaccine for the control of bovine brucellosis. B19 differs from other B. abortus strains in its sensitivity to erythritol. We took advantage of a previously obtained erythritol sensitive Tn 5 insertion mutant of B. abortus 2308 to clone the chromosomal region containing erythritol catabolic genes from this representative pathogenic strain and from the vaccine strain B19. Physical mapping with restriction endonucleases and nucleotide sequence determination revealed the existence of a 702 bp long deletion, occurring between two short direct repeats, in the chromosome of B19. This deletion rendered the B19 strain sensitive to erythritol. Two oligonucleotides whose sequences flank this deletion provided an easy method to differentiate B19 from all other B. abortus isolates.  相似文献   

17.
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.  相似文献   

18.
Human parvovirus B19 (B19V) infection can be a life-threatening condition among patients with hereditary (chronic) hemolytic anemias. Our objective was to characterize the infection molecularly among patients with sickle cell disease and thalassemia. Forty-seven patients (37 with sickle cell disease, and 10 with β-thalassemia major) as well as 47 healthy blood donors were examined for B19V infection by anti-B19V IgG enzyme immunoassay, quantitative PCR, which detects all B19V genotypes, and DNA sequencing. B19V viremia was documented in nine patients (19.1%) as two displayed acute infection and the rest had a low titre viremia (mean 3.4?× 10(4) copies/mL). All donors were negative for B19V DNA. Anti-B19V IgG was detected in 55.3% of the patients and 57.4% among the donors. Based on partial NS1 fragments, all patient isolates were classified as genotype 1 and subgenotype 1A. The evolutionary events of the examined partial NS1 gene sequence were associated with a lack of positive selection. The quantification of all B19V genotypes by a single hydrolytic probe is a technically useful method, but it is difficult to establish relationships between B19V sequence characteristics and infection outcome.  相似文献   

19.
Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.  相似文献   

20.

Background  

Human parvovirus B19 (B19) is known to induce apoptosis that has been associated with a variety of autoimmune disorders. Although we have previously reported that B19 non-structural protein (NS1) induces mitochondrial-dependent apoptosis in COS-7 cells, the precise mechanism of B19-NS1 in developing autoimmunity is still obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号