首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Quantitative Growth of Naegleria in Axenic Culture   总被引:5,自引:3,他引:2       下载免费PDF全文
A strain of Naegleria gruberi, isolated from a Vero cell culture and designated TS-1, was axenically cultivated in monolayer and mass aerating suspension culture. Cultural conditions for constant growth parameters and high-exponential cell densities were defined. Serum or other supplemented fractions were found essential in both Trypticase-yeast extract-glucose (TYG) and Casitone (CAS)-based media. Monolayer cultures grown in the CAS medium required lower levels of serum to reach maximum stationary densities of amoebae than cultures grown in the TYG medium. Heat-killed (121 C, 10 min) whole cell and cell lysate bacterial fractions were capable of replacing the serum in both the TYG and CAS media. Heat-killed bacterial fractions provided the same levels of growth as attained with serum in TYG medium, whereas the bacterial lysate supported only minimal growth in the same medium. In the CAS medium, both bacterial fractions resulted in the same level of growth which was equal to that obtained in reduced serum content. Strain TS-1 was established in suspension culture with the CAS medium used in monolayer culture. The addition of sheep red blood cells (RBC) or RBC lysate greatly enhanced growth responses. Further modifications resulted in a final medium for suspension culture consisting of Casitone-yeast extract-glucose-vitamin base, supplemented with serum and RBC lysate. This medium supported growth with a mean generation time of 9 h at 30 C and a stationary phase yield of greater than 5 x 10(6) amoebae per ml.  相似文献   

4.
The diversity of bacterial species in the human oral cavity is well recognized, but a high proportion of them are presently uncultivable. Candidate division TM7 bacteria are almost always detected in metagenomic studies but have not yet been cultivated. In this paper, we identified candidate division TM7 bacterial phylotypes in mature plaque samples from around orthodontic bonds in subjects undergoing orthodontic treatment. Successive rounds of enrichment in laboratory media led to the isolation of a pure culture of one of these candidate division TM7 phylotypes. The bacteria formed filaments of 20 to 200 μm in length within agar plate colonies and in monospecies biofilms on salivary pellicle and exhibited some unusual morphological characteristics by transmission electron microscopy, including a trilaminated cell surface layer and dense cytoplasmic deposits. Proteomic analyses of cell wall protein extracts identified abundant polypeptides predicted from the TM7 partial genomic sequence. Pleiomorphic phenotypes were observed when the candidate division TM7 bacterium was grown in dual-species biofilms with representatives of six different oral bacterial genera. The TM7 bacterium formed long filaments in dual-species biofilm communities with Actinomyces oris or Fusobacterium nucleatum. However, the TM7 isolate grew as short rods or cocci in dual-species biofilms with Porphyromonas gingivalis, Prevotella intermedia, Parvimonas micra, or Streptococcus gordonii, forming notably robust biofilms with the latter two species. The ability to cultivate TM7 axenically should majorly advance understanding of the physiology, genetics, and virulence properties of this novel candidate division oral bacterium.  相似文献   

5.

Background

Ivory Coast is a West African country with the highest reported cases of Buruli ulcer, a disabling subcutaneous infection due to Mycobacterium ulcerans. However, the prevalence of environmental M. ulcerans is poorly known in this country.

Methods

We collected 496 environmental specimens consisting of soil (n = 100), stagnant water (n = 200), plants (n = 100) and animal feces (n = 96) in Ivory Coast over five months in the dry and wet seasons in regions which are free of Buruli ulcer (control group A; 250 specimens) and in regions where the Buruli ulcer is endemic (group B; 246 specimens). After appropriate total DNA extraction incorporating an internal control, the M. ulcerans IS2404 and KR-B gene were amplified by real-time PCR in samples. In parallel, a calibration curve was done for M. ulcerans Agy99 IS2404 and KR-B gene.

Results

Of 460 samples free of PCR inhibition, a positive real-time PCR detection of insertion sequence IS2404 and KR-B gene was observed in 1/230 specimens in control group A versus 9/230 specimens in group B (P = 0.02; Fisher exact test). Positive specimens comprised seven stagnant water specimens, two feces specimens confirmed to be of Thryonomys swinderianus (agouti) origin by real-time PCR of the cytb gene; and one soil specimen. Extrapolation from the calibration curves indicated low inoculums ranging from 1 to 102 mycobacteria/mL.

Conclusion

This study confirms the presence of M. ulcerans in the watery environment surrounding patients with Buruli ulcer in Ivory Coast. It suggests that the agouti, which is in close contacts with populations, could play a role in the environmental cycle of M. ulcerans, as previously suggested for the closely related possums in Australia.  相似文献   

6.
A synthetic medium for Opercularia coarctata was developed that contains 20 amino acids, 10 vitamins, an 8-component balanced salt solution, Fe2(SO4)3·(NH4)2SO4·24H2O, Tween 80, stigmasterol, a 7-component nucleic acid mixture, phenol red as an indicator, and 2,500 U.S.P. units/ml penicillin to maintain sterility. This medium supported axenic survival for 96 hr. Multiple supplements of thioctic acid, niacin, niacinamide, inositol, PABA, oleic acid, and Fe(NO3)2·9H2O instead of Fe2(SO4)3·(NH4)2SO4·24H2O coverted the survival medium into a growth medium, which permitted 36–45 days continuous cultivation of populations in excess of 4 × 103 cells/3.0 ml final volume. Five generations were produced during the 48 hr logarithmic growth period. Serial transfers at 72 hr and during periods of greatest cell density produced a maximum of 8 generations 96 hr after initiation but the medium failed to sustain growth through more than 6 serial transfers. Extension of this investigation to formulating a minimal axenic medium is discussed.  相似文献   

7.
Effects of the chlorinated insecticide Kepone on the ecology of Chesapeake Bay and James River bacteria were studied. Kepone-resistant bacteria present in a given environment were found to reflect the degree of fecal and/or high organic pollution of the sampling sites, based on total numbers and generic composition of the populations of Kepone-resistant bacteria. The presence of Kepone-resistant bacteria was found to be correlated (α = 0.01) with total coliforms, fecal coliforms, and total aerobic viable heterotrophic bacteria, but not with Kepone concentration, since Kepone-resistant bacteria were present in locations where Kepone could not be detected by the analytical methods used in this study. Only gram-negative bacteria, predominantly Pseudomonas, Vibrio, and Aeromonas spp., were found to be resistant to ≥10 μg of Kepone per ml. Gram-positive bacteria, i.e., Bacillus and Corynebacterium spp., were generally sensitive to ≥0.1 μg of Kepone per ml. From results of cluster analysis of taxonomic data, we determined that characteristics of Kepone-resistant bacteria included: resistance to pesticides and heavy metals; degradation of oil; positive oxidase and catalase reactions; and nitrate reduction. From results of the ecological and taxonomic analyses, we conclude that Kepone resistance in estuarine bacteria is due to the physicochemical composition of the gram-negative cell wall and not prior exposure to Kepone. Therefore, the presence of Kepone-resistant bacteria cannot serve as an indicator of Kepone contamination in the aquatic environment where gram-negative bacteria are predominant.  相似文献   

8.
Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.  相似文献   

9.
10.
The ability of non-tuberculous mycobacteria to form biofilms may allow for their increased resistance to currently used biocides in medical and industrial settings. This study examines the biofilm growth of Mycobacterium fortuitum and Mycobacterium marinum, using the MBEC™ assay system, and compares the susceptibility of planktonic and biofilm cells to commercially available biocides. With scanning electron microscopy, both M. fortuitum and M. marinum form biofilms that are morphologically distinct. Biocide susceptibility testing suggested that M. fortuitum biofilms displayed increased resistance over their planktonic state. This is contrasted with M. marinum biofilms, which were generally as or more susceptible over their planktonic state. Received: 15 February 2002 / Accepted: 28 March 2002  相似文献   

11.
We found that species combinations such as Lactobacillus casei subsp. rhamnosus IFO3831 and Saccharomyces cerevisiae Kyokai-10 can form a mixed-species biofilm in coculture. Moreover, the Kyokai-10 yeast strain can form a biofilm in monoculture in the presence of conditioned medium (CM) from L. casei IFO3831. The active substance(s) in bacterial CM is heat sensitive and has a molecular mass of between 3 and 5 kDa. In biofilms from cocultures or CM monocultures, yeast cells had a distinct morphology, with many hill-like protrusions on the cell surface.  相似文献   

12.
SYNOPSIS. Several strains of particle-bearing and particle-free Paramecium aurelia have been cultivated in an axenic medium composed of proteose peptone, trypticase, yeast nucleic acid, MgSO4.7H2O, TEM-4T (diacetyl tartaric acid esters of tallow monoglycerides), stigmasterol and a mixture of vitamins. The “yeast fraction,” an indispensable component of previous media used for the cultivation of these ciliates has been replaced by a mixture of trypticase, yeast nucleic acid and TEM-4T. Particle-bearing animals of stock 299 lambda, 138 mu, and 139 pi maintain their particles when cultivated in the medium, whereas particle-bearing animals of stock 51 kappa, 225 kappa and 114 signia do not. With the exception of stock 92 (syngen 3) the medium appears to be selective in its ability to support the growth of animals of the even- but not odd-numbered syngens of P. aurelia. Maintenance of the particles was dependent only to a small degree upon environmental conditions brought about by changes in pH and temperature. Division of the particles was found to be comparable with the division of the protozoan. Methods for the growth, maintenance and mass cultivation of particle-bearing P. aurelia are given in detail.  相似文献   

13.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, one of the most common mycobacterial diseases of humans. Recent studies have implicated aquatic insects in the transmission of this pathogen, but the contributions of other elements of the environment remain largely unknown. We report here that crude extracts from two green algae added to the BACTEC 7H12B culture medium halved the doubling time of M. ulcerans and promoted biofilm formation. Using the 7H12B medium, modified by the addition of the algal extract, and immunomagnetic separation, we also demonstrate that M. ulcerans is associated with aquatic plants in an area of the Ivory Coast where Buruli ulcer is endemic. Genotype analysis showed that plant-associated M. ulcerans had the same profile as isolates recovered in the same region from both aquatic insects and clinical specimens. These observations implicate aquatic plants as a reservoir of M. ulcerans and add a new potential link in the chain of transmission of M. ulcerans to humans.  相似文献   

14.
We report here that gemfibrozil (GFZ) inhibits axenic and intracellular growth of Legionella pneumophila and of 27 strains of wild-type and multidrug-resistant Mycobacterium tuberculosis in bacteriological medium and in human and mouse macrophages, respectively. At a concentration of 0.4 mM, GFZ completely inhibited L. pneumophila fatty acid synthesis, while at 0.12 mM it promoted cytoplasmic accumulation of polyhydroxybutyrate. To assess the mechanism(s) of these effects, we cloned an L. pneumophila FabI enoyl reductase homolog that complemented for growth an Escherichia coli strain carrying a temperature-sensitive enoyl reductase and rendered the complemented E. coli strain sensitive to GFZ at the nonpermissive temperature. GFZ noncompetitively inhibited this L. pneumophila FabI homolog, as well as M. tuberculosis InhA and E. coli FabI.The advent of AIDS and the emergence of many multidrug-resistant bacterial species have led to renewed efforts to find new antibiotics. The most commonly used antibiotics act by blocking bacterium-specific DNA, RNA, or protein synthesis. Mycobacterium tuberculosis is a major exception to this generalization. While streptomycin, an inhibitor of bacterial protein synthesis, was the first antibiotic to be used successfully to treat M. tuberculosis, isoniazid (INH), an inhibitor of mycobacterial lipid synthesis, is presently the drug most commonly used to treat infections with this organism (2, 43). The differential sensitivity to INH of M. tuberculosis versus mammalian cells reflects the fact that most bacterial fatty acid synthases (type II synthases) are comprised of discrete, separable enzymes encoded by separate genes, while mammalian fatty acid synthases (type I) are dimeric proteins in which a single polypeptide catalyzes the seven enzymatic activities of fatty acid synthesis (21, 52).In previous studies (45), we reported that gemfibrozil (GFZ), a commonly prescribed and well-tolerated hypolipidemic drug, inhibits the export of various organic anions, including penicillin and fluoroquinolones, from murine macrophages, thereby elevating the intracellular concentration of these antibiotics and enhancing their capacity to block intracellular growth of Listeria monocytogenes. In exploring this system, we discovered that while GFZ has no effect on axenic or intracellular growth of Listeria monocytogenes, it inhibits axenic growth of all Legionella pneumophila strains tested and of 5 wild-type and 22 multidrug-resistant strains of M. tuberculosis and inhibits intracellular growth of L. pneumophila Philadelphia-1 and M. tuberculosis H37RV in human and mouse macrophages, respectively.Both M. tuberculosis and L. pneumophila are facultative intracellular pathogens that enter host macrophages by phagocytosis (25, 26), grow in nonlysosomal membrane-bound cytoplasmic vacuoles (24), have special nutrient requirements (38, 54, 55), and produce a relatively unique spectrum of membrane lipids (7, 57). However, M. tuberculosis is a slow-growing and dangerous organism with which to work. In contrast, L. pneumophila has a relatively short doubling time (120 min) in axenic culture medium and requires no special biohazard precautions. Therefore, we explored the mechanism(s) responsible for GFZ''s antibiotic activity in L. pneumophila, in the expectation that a similar mechanism(s) would be operative in M. tuberculosis.We report here that GFZ noncompetitively inhibits L. pneumophila and M. tuberculosis enoyl reductases and provide genetic evidence consistent with the hypothesis that GFZ blocks growth of these bacteria by inhibiting their enoyl reductases. These findings, coupled with our inability to select a highly GFZ-resistant strain of L. pneumophila, the sensitivity to GFZ of all 22 drug-resistant M. tuberculosis strains tested, the emerging threat of extensively drug-resistant M. tuberculosis (51), and the paucity of new chemical entities for the treatment of tuberculosis, have prompted us to describe GFZ''s antibiotic activities.  相似文献   

15.

Background

An understanding of the factors driving the distribution of pathogens is useful in preventing disease. Often we achieve this understanding at a local microhabitat scale; however the larger scale processes are often neglected. This can result in misleading inferences about the distribution of the pathogen, inhibiting our ability to manage the disease. One such disease is Buruli ulcer, an emerging neglected tropical disease afflicting many thousands in Africa, caused by the environmental pathogen Mycobacterium ulcerans. Herein, we aim to describe the larger scale landscape process describing the distribution of M. ulcerans.

Methodology

Following extensive sampling of the community of aquatic macroinvertebrates in Cameroon, we select the 5 dominant insect Orders, and conduct an ecological niche model to describe how the distribution of M. ulcerans positive insects changes according to land cover and topography. We then explore the generalizability of the results by testing them against an independent dataset collected in a second endemic region, French Guiana.

Principal Findings

We find that the distribution of the bacterium in Cameroon is accurately described by the land cover and topography of the watershed, that there are notable seasonal differences in distribution, and that the Cameroon model does not predict the distribution of M. ulcerans in French Guiana.

Conclusions/Significance

Future studies of M. ulcerans would benefit from consideration of local structure of the local stream network in future sampling, and further work is needed on the reasons for notable differences in the distribution of this species from one region to another. This work represents a first step in the identification of large-scale environmental drivers of this species, for the purposes of disease risk mapping.  相似文献   

16.
在灭菌自来水模拟水体中,研究了7种细菌的存活和生长规律。Klebsiella pneumo-niae,Enterobacter aerogenes,Agrobacterium tumefatciens,在7天内平板计数降至0,而水体中镜检细菌总数(AODC)和活菌直接计数(DVC)结果无大变化,说明细菌已变成活的非可培养状态。Micrococcus,flavus 和 Streptococcus faecalis 的可培养菌数也可降至0。Pseudomonas sp.在48小时内由10~5降至10~2cfu/ml,随即升至10~6 cfu/ml 并持续到实验终了(41天)。Bacillus subtilis 在48小时平板计数降至10~2cfu/ml 并维持在该水平至实验结束(38天)。研究结果表明仅用涂布平板法检测多种细菌在水环境中的生存和分布是不合适的。  相似文献   

17.
Apical meristem culture of Eichhornia crassipes has shown that for successful regeneration, the excised meristem dome must be associated with at least the youngest leaf primordium as part of the explant and a culture medium containing coconut milk (10 %, v/v), IAA (0.1 mg/l) and kinetin (1 mg/l) as growth supplements with 2 % sucrose as carbon source.  相似文献   

18.
A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation.  相似文献   

19.
20.
Small non-coding RNAs (sRNAs) play a significant role in regulation of bacterial physiological behaviors. After sensing any environmental cue such as fluctuation of nutrient concentration, temperature, pH, and osmolarity, these sRNAs interfere to transmit these signals to target regulators and genes. sRNAs have key role in biofilm formation process by base pairing with target mRNAs or interaction with modulating proteins to both positive and negative regulation mechanisms. There are various regulatory systems to characterize the initiation and formation of special bacterial biofilms that are mostly described as two component systems based on sRNAs functions. In this study, regulatory pathways that are important for biofilm formation and genetic responses to environmental stimuli in mature biofilms were evaluated. Some of the regulatory systems that produce common types of biofilms such as curli, PGA, cellulose and polysaccharides such as alginate, colonic acid, Psl and their involved sRNAs functions were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号